Generalized Confluent Hypergeometric Systems included in Matrix Painlevé System

Y. Murata (Faculty of Economics, Nagasaki University)
N. M. J. Woodhouse (The Mathematical Institute, Oxford University)

Abstract

In this article, we investigate Generalized Confluent Hypergeometric Systems included in Matrix Painlevé Systems and corresponding gauge potentials of the Anti-Self-Dual Yang-Mills equations. Every nondegenerate Matrix Painlevé System $M_{\lambda}(k, l, m, n)$ includes a linear 2-system LS_{λ} with respect to the variables μ and σ and is equivalent to the Riccati equation R_{J} included in Painlevé System S_{J}. Let $\tilde{M}_{\lambda}(k, l, m, n)$ be the symmetric ASDYM equation under the action of PH_{λ} which is equivalent to the nondegenerate Matrix Painlevé System $M_{\lambda}(k, l, m, n)$. $M_{\lambda}(k, l, m, n)$ consists of the following equations:

\[
\begin{align*}
(1) & \quad \partial_{z} \Phi_{w} - \partial_{w} \Phi_{z} + [\Phi_{w} \Phi_{z}] = 0 \\
(2) & \quad \partial_{\tilde{z}} \Phi_{w} - \partial_{w} \Phi_{\tilde{z}} + [\Phi_{w} \Phi_{\tilde{z}}] = 0 \\
(3) & \quad \partial_{\tilde{z}} \Phi_{\tilde{z}} - \partial_{\tilde{w}} \Phi_{z} - \partial_{w} \Phi_{\tilde{w}} + \partial_{w} \Phi_{w} + [\Phi_{\tilde{w}} \Phi_{\tilde{w}}] - [\Phi_{w} \Phi_{\tilde{w}}] = 0 \\
(4) & \quad \partial_{\kappa} \Phi_{\kappa} = 0, \partial_{\tilde{\kappa}} \Phi_{\kappa} = 0, \partial_{\tilde{\kappa}} \Phi_{\kappa} = 0 \quad (\kappa = \tilde{z}, w, \tilde{w}, z)
\end{align*}
\]

LS_{λ} is equivalent to a linear subsystem $\overline{LS_{\lambda}}$ in $\tilde{M}_{\lambda}(k, l, m, n)$. $\overline{LS_{\lambda}}$ consists of 8 equations which are classified into 3 groups (A) (B) (C). (A)(B) are included in (4) of $\tilde{M}_{\lambda}(k, l, m, n)$, while (C) is included in (1)(2)(3) in $M_{\lambda}(k, l, m, n)$.

Keywords

Generalized Confluent Hypergeometric System, Matrix Painlevé System, Anti-Self-Dual Yang-Mills equation