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Abstract

We study the imitational behavior, that is, learning or imitation of each individual
in a multi-population game when the population state converges to an equilibrium
state. Our study is based on the pathwise analysis of a continuous time Markov
chain that completely describes the imitational behavior of each individual.

We show that all individuals settle on a pure strategy in the long run if and only
if the pure strategy is a best reply to the limit state. Moreover, all individuals’ time
average of holding each strategy become equalized to the weight of the strategy at
the limit state to which the population state converges, because their schemes of
imitational behavior go to the same. Our results assert that it is inappropriate to
reason about each individual’s imitational behavior in the population based only
on the convergence of the population state.

JEL classification:C72,C79.

Keywords:imitational behavior,propagation of chaos, Mckean process,elimination
of strategy,ergodicity, equalization.



1 Introduction

In recent years many authers study imitation or learning models in which individ-
uals choose actions by imitating or learning others’. For exampbegds and
Sarin (1997) and (2000), Cabrales (2000) and Gale et al.(1995) present models
in which individuals randomly select another individual and imitate his strategy
when the satisfaction level with the pai®from their current strategies fall below
some target level.

Bjornerstedt and Schlag (1996) and Schlag (1998) present models in which
the paydr of individuals are realized by a multi-armed bandit and they choose an
action (to pull an arm of the bandit) based upon the imformations abouttsayo
of their own and another individual ramdomly sampled.

Weibull (1995) and Bjnerstedt and Weibull (1996) formulate social evolution
by imitation in a generic scheme and give a few specific examples of imitation
dyanamics. In these works it is shown that imitation or learning models can be
reduced to the replicator dynamics in certain settings.

In the works they model imitational behavior,i.e.,imitation or learning in stochas-
tic formulations, where individuals choose their strategies on the basis of some
probabilistic law, and deduce deterministic equations which describe dynamics
of population share of individuals to use each strategy. Then they get some im-
plications about the imitational behavior of inidividuals by the analysis of the
deterministic dynamics. This approach providefiisient informations about ag-
gregated behavior in the populations. But it does fifisient informations about
the stochastic behavior of each individual such as whether the strategy of each
individual converges to some pure strategy or whether each individual goes to
behave alike by imitational behavior. This motivates us to analyze a stochastic
process itself that represents the imitational behavior of each individual.

In this article we construct and analyze the stochastic process that perfectly
describes the imitational behavior of each individuarhis is done in a generic
frame basically borrowed from Weibull (1995) andBjersted and Weibull (1996).

LIn this article we extend the stochastic pathwise approach of Tanabe (2001) in two aspects.
One is the extention from a single-population to a multi-population in the model. The other is
that results are explicitly applied to not only replicator dynamics but fiagonotonic dynamics
which contain the replicator dynamics as a special case.
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In the frame we considarn populations with countable individuals who are in-
finitely lived. Each individual holds some pure strategy for some time interval,
and occasionally reviews and changes his strategy. This reset of the strategy is
based on some review rate function and choice probability function which may
depend on the payioof his strategy against the current population stateptayer

game.

The stochastic process constructed for our analysis is a continuous time Markov
chain on the space of pure strategies. It jumps from one pure strategy to another,
following the choice probability when an arrival time of a Poisson process comes,
of which arrival rate is given by the review rate function. Each stochastic path
of the process represents the realized transition of each individual’'s strategy, and
the marginal distribution of the process at each time does the population shares.
Therefore, by analyzing the process in a stochastic pathweise we can get implica-
tions about the realized imitational behavior of each individual.

To put it concretely, consider the following two questions in this article. In the
study of imitation or learning model, one of the most interesting issue is what the
outcome by imitation or learning is, that is, as the result of imitation or learning
process, to what equilibrium state the population state converges in the long run.
These questions are to investigate the behavior of each individual in the conver-
gence of the population state to such an equilibrium state.

The first question is on the converegence of the strategy taken by each individ-
ual to some pure strategy. When the population share of individuals who take pure
strategyk converges to one in the long run, does the strategy of each individual
converge to strategy; that is, does each individual go to stick on strate@y

The second is on the time-averaged behavior of each individual. When the
state of population shares converges to some state which does not necessarily put
all weight on one pure strategy, what is each individual’s time average of holding
strategies, or in what ratio of time does each individual hold each strategy in other
words ?

In order to answer these questions, the analysis of deterministic dynamics
which represents the whole population behaviors arefiiicgent, but we need
to analyze the stochastic process in a pathwise.

Our main results are as follows. The first one is that under some assumptions,



the strategy of each individual converges to some pure strategy if and only if the
strategy is a unique best reply to the limit state to which the population state
converges. In a single population model this means that even if the population
share goes on stratedy the strategy of each individual doest converge to
strategyk unless k, k) is a strict Nash equilibrium. So the answer to the first
guestion is “no” in a mathematical sence. This result asserts that it is inappropriate
to reason about each individual’s imitational behavior in the population based only
on the convergence of the population state.

The second is that each individual’s time average of holding time of a strategy
converges to the weight of the strategy at the limit state when the population share
of individuals converges to some state. This result is an extension offBsrko
individual ergodic theorem in mathematics and tells us two things. One is that the
behavior of all individuals become equalized at least in the time average when the
population share goes to some state. The other is that the time average is given by
the limit state.

So the second result implies each individual goes to behave alike at least in
the time average by imitational behavior in the situation where the population
share converges. Consequently the time average offipéyroeach individual
equals to that of the limit state. Concering about the first question, even if the
strategy of each individual does not converges to strakegiie mean visiting
time to strategyk equals to one, and each individual stays on the strategy in all
time except occasional visits to other strategies if the population share goes on
strategyk.

The rest of this paper is organized as follows. Section 2 describes the model
and makes preparations for the anlysis. Section 3 constructs the stochastic process
called a Mckean process that describes the imitational behavior of each individual.
Section 4 and 5 present the results about the elimination of a strategy and the
ergodicity of the process, containing our two main results. Section 6 demonstrates
how our results work in applications. Section 7 concludes, and Appendix contains
all proofs.



2 Formulation

In this section we model imitational behavior in a stochatic frame basically bor-
rowed from Weibul(1995) and Bjnersted and Weibull (1995). Further, we set
some technical assumptions and specific types of imitational schemes to realize
regular selection dynamics.

2.1 Model

Here we give basic notations and briefly sketch the model. First wersgtlayer
game as follows.l = {1,...,n} is the set of players, anf' = {1,..., m} with

m > 2 be the pure-strategy set of playee | using character, j for a player
andh, k, | for a pure strategya' is the mixed-strategy set @i, and pure strategy
h e S'is idetified with the unit vectog, = (0,...,0, h_1th, 0,...,0). We denote
the set of pure strategy profileS' by S and the polyhedron of mixed-strategy
profiles by® with open domairD c R™ containing® , wherem=m* + - - + m",
n'(u) is the paydf to playeri € | whenu = (U, ...,u") € @ is played.

Now we introduce a process of imitational behavior. In the preliminary, first
supposen populations withA individuals sifixed byA = 1,..., A who live for-
ever and interact each other. We identifg ® a population state profile, i.eu‘h 5
the share of individuals on populatiowho uses strategy € S'. Each individual
in each population holds some pure strategy for some time interval, and occasion-
ally reviews and changes his strategy based on review rate func;iorln;—> R,
and choice probability functiong, : D — a',i € . We call ¢}, p},) imitation
scheme foh-individual in populationi and ¢, p'),i € | simplyimitation scheme

Let X! (t) be the strategy of-th individual in population at timet and de-

. o . . 1
fine an empirical distribution o8' andS by U'®(t) = N Z xi(t) andU®(t) =
A=1

(ULW (D), ..., U"(1)) respectively, wheré, stands fors-measure at. Then in-
dividuals change their strategies one by one in the following way.

Let N‘il(t),/l =1,...,A,i € | be mutually independent Poisson processes in-
dependent oK,(0), 4 = 1,..., A,i € | with intensity or arrival rate' ;(0)(U(A)(0))'
A =1...,A,i € | respectively, and suppose,the first jump time oﬂ\liﬂll’l(t),

occurs before that dﬂ}l(t),ﬂ # A1,1 # 1. 1.e., 01 IS “the first of the first jump
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times”. Then av, only thed;-th individual in population; reviews his strategy
and chooses strateg%(o-l) according to probabilit;pxill (UM(0)).

Next, IetNif(t),/l =1,...,A,i €| be mutually indeplendent Poisson processes

independent ofX\(s), s< 01,4 = 1,..., A,i € I} with intensityr' ;(al)(U(A)(al))’
A =1...,A,i €| respectively, beginning at;, and supposer,, “the first of
the flrstJump times” is realized bM'zZ(t). Then ato,, only theA,-th individual
in populationi, reviews his strategy and chooses stratxgz\(az) according to
probability p, g (UW(o,)), and so on.

This reset procedure is the same for all individuals in each population. If
X1(0),4 = 1,...,A are independently and identically distributed far |, by the
law of large numbersJ™(t) converges to some(t) = (u(t),...,u"(t)) € O in
probability asN — oo. Moreover, fori € | X(t),4 = 1,..., A, the transition
of individuals’ strategy, go to represent a common stochastic processt is
constructed by review rateju(t)) and choice probabilitiep'(u(t)),i € | and has
u(t) as a marginal distribution. This phenomenon is callpdopagation of chaqs
and the common stochastic process is callddckean processThe propagation
of chaos is equivarent to the law of large numberdf8Y (see Tanaka (1983) and
Snitzman(1984)).

Now we reseh populations with countable individuals who review and change
thier strategies based on given imitation schemep(),i € I. The above argu-
ment suggests us to consider that the transition of all individuals is represented by
® ®Xi i.e., an infinite direct product of independent copies of the Mckean pro-
cess Then, if we show some property of a stochastic path holds with probaility
one forX', the realized transition of the strategy of each individual in poplation
always represents that property. Thus, by analyzing the Mckean process in a path-
weise, we can understand the behavior of each inidividual in populations which
is stochastically realized based on review ratés(t)) and choice probabilities
p'(u(t)),iel.

We construct the Mckean process and prove the propagation of chaos in sec-
tion 3. After that we study the imitational behavior in an individual-wise based on
the analysis of the Mckean process.



2.2 Assumptions

We assume that fdre S',i € | the review rate functionih : D —» R, is Lipschitz
continuous with open domaid ¢ R™ containing®, and that
there exisC!,,C!, > O fori € | such that

Cl,>ri(u>Cl, heS,uecao. (2.1)

We remark that we always have the left inequality of (2.1) by the continuity of
r' on®. So assumption (2.1) essentially assures that each individual in population
I reviews his strategy with positive probability even when the current state is on
the boundary 0® such asu‘h = 1 for someh € S'. This is an implicit assumption
that each individual seeks an opportunity to promote his fiegtoany state, so
that we consider it a rational assumptiéinin the following we always assume
(2.1) holds for alli € 1.

Further, forh € S',i € | the choice probability functiop;, : D — A’ is also
Lipschitz continuous with open domay and impose the following assumptions.
These assumptions are not strong, so that many models of imitational behavior
satisfy them.

(BL:i) There exists,, > 0 such that

Cluth > plu(u),h# 1 € S,ueO.
(B2:i) There exists,, > 0 such that
Ph(U) > Coui,h#1e S ue®.
(B3:i) There exists Lipschitz continuous functiph: D — A' such that

Pl (U) = pl(u).h,1 € S, u e ®.

Assumption (B1i) and (B2i) are technical ones for the analysis. Roughly
speaking, put together, they imppy(u) is in propotion tou.. Assumption (B3)
prescribes that the choice probability is the same for all individuals in population
i. As is seen in a later counterexample, this assumption implicitly excludes the

2But an alternative assumtion that the review rate degenerates into zero at the q'];aield‘s
also attractive.



limit state at which the corresponding stochastic pro¢essa reducible Markov
chain. This assumption makes the analysis much easier.

2.3 Imitation schemes for regular selection dynamics

In section 3 it will be shown that the imitation dynamics given Weibull(1995)
and Bprnersted and Weibull (1996) is deduced as the marginal distribution of
the Mckean process for the imitational behavior. On the other hand, regular se-
lection dynamics have been studied as one of important classes of dynamics for
social evolutions. In this subsection we set two classes of imitaion schemes for
the marginal distribution of the associated Mckean processes to represent regular
selection dynamics. Further we give a few specific examples of these classes.

2.3.1 Two classes of imitaion schemes

The regular selection dynamics are presented for application to social contexts
and more flexible than the replicator dynamics which are formulated originally in
a biological nature.

The regular selection dynamics @nis generally given by

U =Gl (uu,heSiel, (2.2)

whereG,,h € S',i € | are Lipshcitz continuous functions with open domain
containing® and satisfy

D Gy =0uco,icl. (2.3)
leS!
R"-valued functionG' is calledregular growth rate functionand the condition
(2.3) is to ensure the solution orbit remaingiin
A R"-valued functionF on ® is calledpaygf monotonic(weibull (1995)) or
simply monotoniqSamuelson and Zhang (1992)) if for amyy € S, ue€ ©,i €1,

A, u") > (e, u’) = Fuu) > Fr(u).

3See Samuelson and Zhang (1992) and subsection 5.5 in Weibull (1995).
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When regular growth rate functid®' is paydt monotonic, the associated se-
lection dynamics (2.2) is calledaygf monotonic We focus on two classes of
imitation schemes which are not necessarily disjoint. The both classesflre su
ciently broad so that the both of them realize all regular selection dynamics. That
is, the following imitation dynamics given by Weibull(1995) andBjersted and
Weibull (1995) represent all regular selection dynamiegien they are based on
imitation schemes in the both classes.

u = > WP - U, he Sliel. (2.4)

leS

Class|. Oneisthat}(u) = r,h € S' for some positive constantand pj, (u) =
al, (U, h # | € S' for someRY-valued, Lipschitz continuous functiagj, with

Z ap(U)U < 1,u € ©. That is, the review rate is a common constant among in-

I£heS
dividuals in population, and the probabibility of changing strategy is propotional

to population shares. For this case, (2.4) is reduced to

U =r Z (@ (U) — ol (W)Uu, he Sliel. (2.5)
|#heSi

Class Il.  The other is of a type such that only a choice probability fixed by
pl,(u) = u,h!l € S'i € |. Thatis, the selection of the strategy is random
according to the frequency of the current population state. For the case, (2.4) is
reduced to

U = (Z U - run,he Shiel. (2.6)

leSi

4In fact, if we set
rh(u) =r, pi(u) = (Gh(u) + r)u/r,he Si el

for somer > ngaxsup{—Gih(u)}, (2.5) turns into (2.2). Further, setting
L ue®

ri(u) = @ — Gh(u), pl,(u) = ul

for somea > n?]axsurG‘h(u), transforms (2.6) into (2.2).
1 ue®
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Then the growth rate functions are p&monotonic if and only if so arg-r',i e
1}.

2.3.2 Examples

Formally any regular selection dynamics can be obtained as the marginal distribu-
tion of a Mckean process by two simple forms such thét) = r or p}, (u) = u..

Here we present specific examples of imitational behavior model in the both
forms.

Propotional imitation. This is based on a “multi-armed bandit” approach
(Schlag(1998), Bjrnerstedt and Schlag(1996)). Given increasing Lipschitz con-
tinuous functionf onR, for h € S',i € I, , let P, (u) be a continuous function
from O into the spacé of all probability distributions orR, such thatP‘h(u) IS
supported with interval, w](0 < w < @) and has meaR! (u) is f(x'(h,u™)).

When the current state igt) at timet , the payd® for eachh-individual on
populationi is independently drawn fromih(u(t)) across individuals and time (by
multi-armed bandit). When a reviewing time comes ttvandividual at timet , he
randomly samples another individual in populatiaccording to the probability
u'(t).

Now suppose his payids x'h at the current state and he sample&aimdividual
whose pay# is X,. Then he switches his strategy frdmto h’ with probability
Xy = %

w-w

Settinga},,, (U) = % XL,>XL(X:“’ — X )PLW)(AX)PL (u)(dX, ), i # h e S' for
u € @, it holds thatp}, (U) = ol (U)U,, with 0 < ol (U) < O forh’ # h e Siin
this model.

Further, if we assume the review rafgu) = r,h € S',i € I, the imitation
scheme for this model is of class | and satisfies assumption)(&Aid (B2i) for

only if X, > X, where

= is called aswitching rate
w—w

SThe space is topologized with the total variation norm.
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i €1%. Noting
(1) = a(0) = == (£ (altf, ™)) = (b, 7)),

for (2.4) we have

'
w-w

(F(r' (e, u™) = > (' (d, u)))u, 2.7)

leSi

-
u, =

(2.7) is a pay@ monotonic dynamics and especially represents replicator dy-
namics in the case df(x) = x.

X, — X, . . .
The proportional imitation with switching ratdl—1 al is optimal , i.e, it max-
w— W

imizes the increase in expected pigaamong all behavioral rules in the single-
person sampling model (proposition 1 in Schlag(1998)).

Reinforcement learning.  This is a model in which the review rate depends
on the level of satisfaction obtained by the pay@orgers and Sarin (1997),
Cabrales(2000),Gale et al.(1995) and section 4.3.3.2 in Veda-Redonde(1996)).

When the current state igt) at timet , eachh-individual compares the utility
f(x'(e, u™(t))) obtainend from the paybr' (e, u™(t)) to some target level of sat-
isfactionu. If f(x'(€,u™(t))) > u, he retains stratedy. Otherwise he randomly
chooses a new starategy according to the current populationugtiteHere the
satisfaction level is uniformly distribued o [w] with w < miny;, f(x(e,u™), ® <
max,; f(r(€,,u™), and independent across individual and time.

For the reason why the satisfaction level is random, there two possible inter-
pretations. One is that the mood of an individual (whether she is ambitious or not)
is randomly determined (section 4.3.3.2 in Veda-Redonde[ ]). The other is that
the satisfaction level is actually fixed while the utility obtainend from the ffayo
is perturbated by random shock.

In this scenario the average review rate and the choice probability are taken as
. w — f(n(e,u™))
r(u) = —
w— w

scheme of this examle is of class Il and satisfies all assumptions in subsection 2.2.

andpi(u) = u.. Then we have (2.7) again. The imitation

GSincea‘hH(u) is a continuous function o8, (B2:) is satisfied from the compactness@f

10



3 Mckean process

In this section we construct a Mckean processSoperfectly describing imita-
tional behavior such that the probability distribution at timiself is represented
by imitation dynamics.This is done in a martingale formulatigfollowing Shiga
and Tanaka(1985). Further we prove the law of large numbers and the propaga-
tion of chaos forA-particle system. First we construct a continuous-time Markov
chain in a martingale formulation.
Givenr', p', setmy x m-matrix valued functioy' on® by
. i i ’
q(h.;u) = r“(u)gh”(u)’ E i E
Then define bounded linear operat@$u), u € ® on B(S') andQ(u),u € ® on
B(S) by

Qe = > d(1;u)e0) - 4(h).he S, ¢ € BES),

leS;

QU)p(h',....h") = Tia Yies, d (M, ;1) 4) p(h?,....,h"), ¢ € B(S),

wherealp(ht, ..., h") = go(hl,...,i_lth,...,h”) —o(nt,...,h"), andB(S') (B(S))
is the Banach space of all bounded functionsSbifresp. S) equipped with the
supremum nornjj - ||.

Let X'(X) be a stochastic process defined on a probability spacg (P) of
that sample paths a(resp S)-valued right-continuous step functions, and set
FX = o(Xi(9); s < t)(respFX = o(X(9); s < 1)).

Definition 1. For ®- valued measurable functiort) andv" € A, X' is asolution
of the martingale problem (MApr ({Q'(v(t))}, V) if X' satisfies

(X (1)) - fot Q(V(s))p(X(s))ds is aFX — martingale for any € B(S'),
(3.1)

L(X'(0)) =V,

where £(X'(0)) stands for the probability law ok{(0)).

’For details of a martingale problem, see Ethier and Kurtz (1985).
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Definition 2. For aS- valued measurable functioift) and av, X is asolution of
the martingale problem (MPpr ({Q(v(t))}, V) if X satisfies

e(X(t)) — fot Q(9)¢(X(9))ds is aF* — martingale for anyy € B(S),
(3.2)
L(X(0)) =w.

In the above definitiongQ'(v(t))}({Q(v(t))}) is called agenerator and X' (X)(X(t)
is said to begeneratedby {Q'(v(t))}(resp {Q(V(t))}). A solution of MP for
((Q'(v(t))}, V) is a Markov process of' of that transition rate frorhto h at time
t is given byd (I, h; v(t)), and a solution of MP for{Q(v(t))}, V) is composed of
mutually independent solution of MP fofQ (v(t))}, V), i € I.

For any fixedc' > C!,, define transition probability matriR'(u),u € ® on S
by

1. .
Erh(u) Py (U), h #h

Pihw(u) = 1. ‘
1-Dizn Erlh(u) Phy(U), h =h

(3.3)

Then a solution of the MP is simply constructed as follows. X&0) be inde-
pendentS'-valued random variable with the distributign,andN'(t) be a Poisson
process or0, 1, ...} with intensityc' independent oiX'(0), denoting byo. the
n-th jump time ofN'(t). SetX'(t) = X'(0) foro, =0 <t < ol. Att = o, X(o))
is randomly chosen according to the transition Ri(t)), and se'(t) = X'(c)
for o) <t < o). Repeating this prcedure we obtes valued proces(t),
which is a solution of the MP{Q'(v(1))}, V).

Let X(t),i € | be mutually independers'-valued Markov processes con-
structed in the above, and s¢t) = (X(t),..., Xn(t)). Then it is shown thaX(t)
is a unique solution of MP for{ Q(v(t))}, V) (see the proof of proposition 1(i)).

Now we give the definition of a Mckean process. It is a Markov process that
moves under the influence of the distribution of itself at each time, and therefore
it represents a stochatic phenomenon with interactions.

Definition 3. Foru € ©, X is aMckean process correspnding (@bbreviated as

12



c.t.) (Q(v); v e ®}) with £L(X(0)) = uif X is a solution of the MP,

e(X(t)) — fot Qu(9)¢(X(9))ds is aF* — martingale for anyp € B(S),
(3.4)
L(X(t)) = u(t) and L(X(0)) = u.

WhenQ(v) is given by an imitation scheme'(p'),i € |, we say a Mckean pro-
cess isassociated witran imitation schemer{( p'),i € 1. From now on, by a
Mckean process we mean a Mckean process associated with an imitation scheme
(r',p),iel.

In definition 3 a generatdQ(u(t))} depends oni(t) , the marginal distribution
of a Mckean process itself while a generat@(v(t))} does on exogenously given
v(t) in definition 2. This diference characterizes a Mckean process as a stochastic
process that represents a stochastic phenomenon with interactions.

If we substitutep = 1, h € S' in (3.4) and take the expectation, we have

ub(t) — ul
= fot Sulriu(s)pi,(u(s)ui(s) — riu(s)ui (s)dshe Si e l. (3.5)

By the continuity ofr' andp', (3.5) is equivarent to

U, = > r(UPh U - (U, U (0) = T, he Sliel.
leS!

This is the imitation dynamics (2.4) given by Weibull(1995) anérBersted
and Weibull (1995). The unique existence of a solution for (2.4) is guaranteed by
the Lipschitz continuity of', p',i € 1. So the marginal distribution of the Mckean
process is a unique solution of the imitation dynamics (2.4).

Now we consider am-particle sysytem, which is a Markov proces%) =
(X1(t), ..., Xx(t)) on S®* generated by the following operater based{n):

A A A
1 1
QVP(Hy,....Ha) = )" Qu(5 D Hiveooo 7 D HDO(Ha... Hy). @ € B(S®),
A=1 =1 =1

whereQ, (£ >0 H, ..., 2 ¥4, HY) stands for the operation &f(+ >3, H1,. ..,
13 HY wert. Hy.
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Let W be the set of alb- valued right continuous step functions with left lim-
its, and definer- field of W by F; = o(W(S); s > t) andF = Vs F; for coordinate
processwv(t), w e W. We denote by: andP® the probability measures ol F)
induced by the Mckean process and ¥*(#*) induced byX® respectively.

Then{P®W, A > 1} is said to be:-chaoticif

A—>

M
im < PW, 0;® - -@py®1®- @1 >= ]_[ < ¢, > foranyp, € B(W). (3.6)
A=1

(3.6) impliesP™ weakly converges tp®*, and is equivarent to the law of num-
bers forU®W i.e., limy_., U® = 4 in probability (Snitzman(1984)) and Tanaka

1 A
(1983)), where) ¥ = = D 0%,
A=1

The following proposition is proved by an application of a standard argument
to a multiple state-space case (see Shiga and Tanaka (1985), Sznitman (1984) and
Tanaka (1982)).

Proposition 1. Givenr', p',i € I, the following statements hold.
(i) Foranyu = u'® --- ® U" € O there exists a unique Mckean proce¢s.t.
{Q%; v € ®) with £(X(0)) = u € © such thati(t) = £(X'(t)) is a unique solution
of (2.4).
(iIf L£(XA(0)) = tP* for U € O, then for anys > 0 andT(0 < T < o) PW is
u-chaotic, and

im P(sup [[lUMN(t) —u(t)]| > €) =0, (3.7)

|
A—co oct<T

whereu(t) = L(w(t); w).

Proposition 1 says that-particle system generated " converges in law
to the infinite direct product of the Mckean process. This fact enables us to study
each individual’s imitational behavior in populations with countable individuals
based on the analysis of the Mckean process as already stated.

From the proof of proposition 1(i), we note that the Mckean process is con-
structed based on review rateé@u(t)) and choice probabilitiep'(u(t)),i € | with
u(t), the unique solution of (2.4). Further, we remark that by replaciry aor'
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for all i € | with any postive constant , we have a Mckean process which is
different from the original only in time scale. So thé&éience by a constant mul-
tiple factor of the review rates does not have any influence on our results.

4 Elimination of strategy

One of the most important problems concering dynamics for imitational behavior
is whether it eliminates suboptimal strategies in the long run. In this section we
study the elimination of a strategy on the Mckean process.

First we state a proposition for the solution of the Markov process generated
by {Q(v(t)}, which gives sfticient conditions for a strategy to vanish and not to
vanish with probability one. Then as a corollary of the proposition, we present
our first main result that a necessary anflisient condition for a stochastic path
of the Mckean process to converge to a pure strategy is that the pure strategy is a
unique best reply in the limit state.

Proposition 2. Fork € S', the following statements hold fof generated by

{Q(V(t)}-
(YUnder (BLi) and (B2i), if IMV,O)t" < +oo with @ > 1, thenP(lim L(X'(t)) =

0)=1.
Vi (t
(i) Under (B21), if Im% > 0 with positive decreasing functiog such that
t—oo

Y1 9(bn) = +co for any constanb > 0, thenP(tIim 1 (X'(t)) = 0) = 0.

Proposition 2.(i) implies that if the choice probability for stratégyanishes
suficiently fast, each individual stops to take strat&gfter a finite time interval.
On the contrary, proposition 2.(ii) implies that even when the choice probability
converges to zero, if the speed of the convergence is not so fast, each individual
never stops to take stratelgy

The following corollary is proved by use of proposition 2.(i) and a result of
Samuelson and Zhang (1992) about paywonotonic dynamics. For example, the
marginal distribution of the Mckean process associated with an imitation scheme
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of class Il such that-r'} is paydt monotonic, represents payanonotonic dy-
namics. Then, due to the corollary, each individual stops to take suboptimal strat-
egy k dominated by some pure strategy after a finite time interval in the imitation
scheme.

Corollary 1. Suppose that the marginal distribution of a Mckean process consti-
tutes a payfi monotone dynamics. If pure stratelys stricly iteratively domi-
nated by another pure strategySh then for the Mckean proceﬁ%étli_)rQ L(X(1) =

0) = 1 for any initial stateu € int(®).

The following main result is also proved as a corollary of proposition 2. Roughly
speaking, in proposition3(ii) the assumption that M is finite implies
' _ u-u Gy (U)uy
lu/(t) - u'| is proportional tau; (t) whenu(t) approaches ta*. (i) and (ii) together
say that under this technical assumption each individual in populiagjoes to fix
on strateg¥ if and only if strategy is a unique best reply to the limit state. Then

(iif) immediately follows from (i) and (ii).

Proposition 3. Suppose that the marginal distributioft) of the Mckean process
represents a payfomonotonic dynamics and thta_:[oliu(t) = u* with u” = €. Then
the following statements hold.

()If k € S' is a unique best reply against, thenP(tILrDoX‘(t) =k) = 1.

(iif forany | € Shj#iel there exist§1|j # k € S' that is a best reply against
HORE i G/ (uu/

u* and lim— = lim ———— are finite, therP(lim 1}, (X'(t)) = 0) = O for
wo U (u) e G (U (fim 1;,(X'(0) = 0)
| | ]

someh, # k € S' that is a best reply against™ .
(iiFor n = 1, i.e., a pairwise contest case in a single populatft(!im X(t) =
k) = 1 if and only if (k, k) is a strict Nash equilibrium.

Consider a case where the marginal distribution of the Mckean process rep-
resents a replicator dynamics in a single population. K.leé an evolutionarily
stable strategy that does not constitute a strict Nash equilibrium.

As is well known, in a replicator dynamics any evolutionarily stable strategy

16



is asymptotically stable. Therefore, if the initial population state belongs to the
attractive domain o, the population state goesdpby the imitational behavior

of individuals. But due to proposition 3(iii), each individual never fixes on strategy

k in spite of our expectation that he surely does. Unfortunately the evolutionary
stability does not insure the convergence of strategy in an individual-wise.

For example, when we model imitational behavior in our society by a repli-
cator dynamics, we apt to think each member in our society goes to take a pure
strategy that is evolutionarily stable on the basis of the convergence of trajectory
to the strategy. But proposition 3(iii) says that this reasoning is false.

5 ergodicity

As is well known, ergodic theorem is generally formulated as the time average of a
function of a stationary process converges to the state-space average of that. In our
case by Birkhé’s individual ergodic theorem (theorem 3 in Skorohod (1989)),

tILr?O % j; t f(X(g))ds =< u, f > a.s. for a Mckean process associated with an
imitation scheme in class Il, starting from any stationary stateint(®). This is
equivarent to that the average sojourn time at any strategy converges to the weight
of the strategy ati for almost all paths.

From the viewpoint of imitational behavior, we can interpret this fact as fol-
lows. For an imitation scheme in class I, the imitation scheme of all individuals
in every population are the same at any stationary stater,j@),= r(u), h,1, € S'
andpj (U) = pj(u), h, 1, S'for everyi € I. Therefore, all individual’s time average
of holding each strategy are equalized.

In this section we extend this result to a case where the marginal distribution
of a Mckean process staring from a state that may be non-stationary converges to
some state. The next proposition is our second main result.

Proposition 4. For everyi € |, assume that (BB: holds and that the marginal

distributionu(t) of a Mckean process convergeuo € © such thatr| (u*) is in-
dependent of, i.e.;'* = r{(u"),l € S' for somer™* > 0. Then for the Mckean
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process,

1
P(lim - Jy (X(8)ds=< g, uls--- U >) = 1,0 € B(S), (5.1)
where< @, u > stands for the expectation &fw.r.t. u.
In particular
1
P(lim n Jy Iu(X(9))ds=ul---ur) =L H=(',....h") €S, (5.2)

wherel, =11 ®--- ® 1,

o1 - .
P(lim n Jy A X(9)ds=r'(U)) =Liel. (5.3)

In a case where a Mckean process begins from a stationary state, proposition
4 is reduced to Birkhfi’s individual ergodic theorem. So proposition 4 is an
extension of the theorem. In a case where an imitation scheme is of class | with
pl, = pi.l.h € S'.i €| or of class Il withu* € int(®), the assumptions are
satisfied, and proposition 4 can be applied.

Under the assumption of proposition 4, whét) approaches ta*, the review
rate of all individual converge to the same rate, and they goes to behave in the
same way in every populaton. Then the behavior of all individuals in time average
become equalized in each populaton, independently of other population. The time
average of holding each strategy coincides the weight of it at the limit state.

Consequently, the time average of the pgiyealized for each individual is
given by the average paffat the limit state as is seen in (5.3). Wh&l) goes to
u*, of coursef fot 7'(u(s))dsdoes tar' (u*), that is, the time average of the average
paydt in each population at timeconverges to that at the limit state. (5.3) shows
that not only as for the average pdlym each population, but also as for each
individual’s realized payid in each population, the time average converges to the
average payd at the limit state.

The following counter example shows that without assumptionijB3at pj,
does not depend o a case where a Mckean proceéss a reducible Markov
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chain is allowed, and then the ergodicity does not hold. Assumption)(B3:
plicitly excludes such a case.

Counter example. SetS = {1, 2, 3,4} and consider the Mckean process asso-
ciated by the following review rate function and choice probability function:

rh(uy=1LhesS,
u, =12 00 15
on (L) = 0, 1=34
hl — .
{Q I‘l’zifh:3,4

0,2y 1=34
Then (2.4) turns into

2 +uw)uy—u,, h=12

U= oUs + Udun — U, h=34

This shows anyi € A with Uy + U, = § is a stationary state. Hence, by lemma 2 in
subsection A.3, for the Mckean process starting from such a stationarystate

t
P@n%fLM@N&JM:LEM@:M:Lh:LZ
—00 0
t
P@n%fLM@N&JM:&MMQ:M:Lh:&4
—00 0

So we have

P@g%ﬁhwwwﬁﬂH=L3:Hﬂm=Lb=%

which shows (5.2) does not hold in this case.

6 Applications

In this section we demonstrate how our results are applied cases where the marginal
distribution of a Mckean process represents a replicator dynamics in 2-populations.
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Consider the following imitation scheme for two populations in classs IALet
andB be normalized pay® matrixes for population 1 and 2 :

[ 0 _ bl 0
A= (0 az)’B_ (0 bz)
Denote by &, %) ((y1, ¥2)) a element oh'(resp A?), and set review rate functions
and choice probability functions as followsi(u) = |ay|+|az|+1-7*(e}, u?), pr.(U) =
ut,h = 1,2 andri(u) = |by| + |by| + 1 — 7?(ut, €2), p (U) = u2,h = 1,2. Then the

marginal distribution of the Mackean proce35Y) is a solution of the following
replicator dynamics in the two-populations.

X1 = (Auy1 — @Y2)XaXe, X2 = —Xq, (6.1a)

Y1 = (01X — DoXo)y1yo, Yo = —VYi. (6.1b)

We analyze the pathwise behavior of the Mckean procésé) (vhen the marginal
distribution converges to limit states in two cases.

Case of g =0,a, >0,b; >0and b, =0. By (6.1) x,(y;) monotonicaly de-

creases (resp. increases) from aryy] € © along é)bl = (i’%)az, and the limit
2 1

state &;,y;) is such that

1- X _
D (R <

(X1, Y1) = (o 1) (1-x)" = y=.
O s A% >

(1-

1-
When 1,y;) = (1 - 7 we ,1) strategy 1 and 2 are irftierent for population

1 while and strategy 1 is a unique best reply for population 2.
Then, notingri(1 - ——,1) = a, + 1, by proposition 3

and 4 we have

1-X

Viz/ by

P(lim % Jr L(X(9)ds =1~ )=LP(imY(®) =1)=1,
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if (1 — %)™ < ¥ . Similary if (1- %) > ¥2 ,
Y1
(1 — )?:L)bl/az

For the case of (* X)) = 2, (0,1) is not a strict Nash equilibrium,and
Y1
(xay2)—-(0.1) Xq

P(lim X(t) = 2) = P(lim Y(t) = 1) = 0,

P(lim X () = 2) = 1, P(lim % J L(Y(9)ds= )=1

| = %l < +o0. S0 by proposition 3(ii) and 4,
1

P(lim % J 1(X(9)ds= 1) = P(lim % J1(Y(9)ds=1) = 1.

In the case where the initial population state on the curve )™ = y3%, the
population state converges ta 1) while (X, Y) never does to (). But it holds
that

o1 o1
Pim = [y (X(9). Y(9)ds= az. lim T [ a%(X(9). Y(9)ds= by) = 1,
and all individuals equally gain the maximum time-average of ffayo
Case of 3 <0,a, <0,by=0and b, <0. This case contains the simplified

ulitimatum game of Gale et al.(1995) (also see section 4.8 in Vega-Redonde (1996)).
As the previous case, the limit stat€,(y;) is such that

b Vi Vi
0,1), X2 < (B)2()a
(0,1) A (¥1> (¥1)
" ~ —h, 1y_ 1y_
(5. Y]) = (1,94, X = (;Z) 82(;%)
(Ly), 0<y; <$1), X2 > (2)2(2)™
Y1 Y1

~ dy
h = :
wnerey; a + a
Since (Q1) is a strict Nash equilibrium, by proposition 3(i),
P(lim X(t) = 2, lim Y(t) = 1) = 1 for 5 < (2)2(L)=.
t—o0 t—oo _ yl yl

—h,

Forx;™ = (%)“”@(i%)‘al, X; = 0,y; = 1 are not a unique best reply to each

other®. By proposition 4,

P(lim % f LX(9)ds= 1, fim % J 11(Y(9)ds=§1) = 1.

8Since  lim |£| = +oo, proposition 3(ii) can not be applied.
(x1.y1)—(L91) Xq
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For x;” > (Ly-22(X)-a by proposition 3(i) and 4,
Y1 Y1
P(lim X(t) = 1) = 1, P(lim % [ a(v(9)ds=y;) =1

7 Concluding remarks.

We have analyzed the imitational behavior of each individual in a multi-population
model when the population state converges to an equilibrium state. Our approach
is characterized by the following two points. One is that it is not to analyze the
behavior of the population shares individuals, but to do the stochatic behavior of
each individual itself. The other is that it has a generic frame so that it is applicable
to braod classes of imitation or learning models.

We have shown that each individual does settle on a pure strategy in the long
run if and only if the pure strategy is a best reply to the limit state. Moreover,
all individuals’ average holding time of each strategy becomes equalized to the
weight of the strategy at the limit state because their schemes of imitational be-
havior goes to the same.

Here we remark that these results heavily depends on the implicit assumption
that individuals are myopic and memoryless. In our model individuals choose
their strategies depending only on the current population state. This leads the
stochastic process representing the behavior of each individual ro having Markov
property, which plays an essential role in the proof of the results. The results
for a model with individuals being not myopic or having memory might become
different from ours.
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A Appendix

A.1 Proofs for section 3

Proof of proposition 1(i). We prove the proposition in three steps. This is a
simple extension of the proof of lemma 2 in Shiga and Tanaka (1985) to a multiple

state-space case.
1st step. In the first step we show thaX(t) constructed by (3.3) is a unique

solution of MP for (Q(v(t))}, V).
Forw,we W andh e S/, set

N(t, b W) = Yo LW () = h, W (s) # Wi(s-)),
Nt b wh) = N(t, b w) — [ af(w/(9), h; v(s))ds

ThenN(t, |; w) is aP*-martingale by lemma 3 in Shiga and Tanaka (1985).
Sincew/ (t),i € | have no common jumps, it holds that

p(W(t)) — ¢(W(0)) = Xie fot Yiest Aje(W(s-))N(ds |; ).
Then we have for any € B(S)

PW(D) — W(0)) - [} QV()e(W(S)ds
= Sia fy Ties Alpw(s-)N(ds I; w)ds

24



and we conclud&(t) is a solution of MP {Q(v(1))}, v).
Next, we show the uniqueness of the MP. For any soluiai the MP,

EX[e(W(1)); Ad] = EX[p(W(9)); Ad]

PX(W(s) = (M. h, .. hM) N A)]dss, As € T

If EX[p(W(9)); As] = EY[@(W(S)); A] for any pair of solutionsX, Y) , then
IEX[e(W(1)); As] = EY[e(wW(D)); Ad]l
< 20 C) el I PX(W(sy) € ) N A) = PY((W(S1) € ) N A [lvar dsi,

where|| u |lvar Stands for the total variation norm of set functigion the field of
all subsets o8,i.e.,|| i llvar= Z lu({H})I.

o HeS
This imples

| PX((W(t) € ) N As) = PY((W(t) € -) N As) llvar

< [F2(3 CI) 11 - | PX(W(SL) € ) N AY) = PY(w(s1) € ) N A llar s,
(A.1)

Hence by Gronwall’s inequality we have
I PX((W(s1) € ) N As) = P"((W(s1) € ) N AS) Ilvar= 0, S < V1 < 8,

which shows the uniqueness of the MP f@@(v(t))}, v).
2nd step. We show the following equation has a unigdevalued solution for
anyu € 0.

<u(t), ¢ > - <u(0)p >= [ < u(9), QU(yp > ds ¢ € B(S),
u(0) = u, (A.2)

By linearity (A.2) is equivarent to

U0 — U(Q)_jen
= fot Siet Zaaw [0 (1L ki u(SDUSe, .o — 0 (i, |; U()U(ie... k.. kn] IS
K=(K,....k0 eS,
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whereug, (t) = ut)({k%, ..., k).

This is a[]; m-dimensional integral equation faft)y, .k € S, ... .k, € S
which has a unique solution singgh, k;-),h,k € S',i € | are Lipschitz contin-
uous. Further it is easily verified thaft),, «.ki € S,...,k, € S" constitute a
probability. So A.2 has a unigu®@- valued solution.

Similary for any®-valued measurable functior{t) andu € O, we have a
unique®-valued solution for

<u(M), @ > = <u)p>= i < u(9), QUI)¢ > ds ¢ € B(S),
u(0) = u, (A.3)

3rdstep. Letu(t) be the unique solution of A.2 far = U'®- - -@u" andX be the
solution of MP for (Q(u(t))}, u). Thenu(t) = L(X(t)) solves A.3 withv(t) = u(t).
This meansu(t) = G(t) and X is a Mckean process c.t.{Q(v);v € ©}) with
L(X(0)) = ubecause of the uniqueness of the solution of A.3. The uniqueness of
the Mckean process is also proved from that of A.3 and MP{fo(u(t))}, u). 0 o

Proof of proposition 1(i)).  The proof proceeds in a fairly standard way as
Sznitman (1984) and Tanaka (1983). Meét be the space dab-valued right con-
tinuous paths with left limits. Theb(t) is a Markov process with sample path
in W. Denote byP’'™ the probability measure oW’ induced byU®™(t). We
prove the law of large numbers fa® (3.7), and then (3.6) easily follows.

First we show{P"™} is tight. Noting

U@t =
1 1 i 1
(R 2214040, - 2 2, T 0h0). . 7 ) 1, (WH(0))
and

1 (W, (t2)) — 1o Wy () = f "3 (14 () - 16 W (N W),

4 esi
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we have

E(A)[||U(A)(t2) _ U(A)(tl)”2|jﬂ:[\]
B %EW[Z 20, f 2 D (Lg (1) - 1g (NS ;W) A7)

i hesi 4 YU Jesi

<EV Q) f © Y N ) (A4)

i hesi 4 YU Jesi

Let Ni,i € I,1 < A < A be mutually independent Poisson processes with
intensityc independent oK*(0),1 < A < A. ThenX®(t) is constructed by the
jump time of N!,i € | and transition lawsR' , (U®™(t)))s,i € |. Thereore,
since it holds that

Ul

t2

EOIC| D) NEAsEW)AF < it - tl(Clte - tal + 1),

U esi
EVC [ Y N@sEw)( [ ) N@s kW < S - b,
U esi b esi

by (A.4) we have
EMUN(M) - UN)IAF] <C(MIt - ta],0<ty <t < T,

whereC(T) is a positive constant depending on
From this we have

E O Iw(ty) —w(t)lI2Iw(tz) —w(ts)][] < CH(T)Iti-t320<t; <t, <tz < T, (A.5)

which shows the tightness ('™} (theorem 15.6 in Billingsley(1968)).
Next we show for any limit poinP’) of {P')}

F(w)
=<W(t), o > — <w(0),p > — ft <wW(s), Q(w(s))p > ds
0
=0,P™ —as, ¢ e B(S). (A.6)

Let {P"™™)} be a subsequence convergind® and set
t
1
Ma(t) = e(w,(t)) — p(wa(0)) - L < wy(9), Q(E Z Wi (9)g > ds

27



ThenM, is aP')-martingale, and
<M, M, >=0,4 #«. (A.7)
Because

t
M@=, [ 3 sletw(s-NNs hw,)ds
iel YO hesi
whereN(t, h; W) = N(t, h; W) - fot q (i (9), h; UA(s))ds andw/, andw) have no
common jumps fon # «.
By using (A.7) we have

1 1
ECF2 = lim EM =] Y M,(t)P = lim —E™M,(t) = 0,
A?'Z AOF = lim =ECIM(D

which imples (A.6).

Sincew(0) = u by the law of large numbers, from the uniqueness of solution
of (A.2) we havew(t) = u(t),0 <t < T,P™-as,, i.e.P™ = §,, which implies
(3.7).

For the propagation of chaos, Iéﬁ) be the marginal probability o) on
the firstWM. Then, we can have the tightnessR§} as (A.5).

Further, by using (3.7) we can show inductively that for any O there exists
An > 0andC,_4(T) > 0 such that foA > A,

[ER[DW(t)); Ay M-+ N A ] — X [OW(E)); Ay N -0 Al
< Coa(M)@lle + 212IM(Y , C,m)

tn

IPR(W(S) € )N A NN AL = (W) € )N AL NN A )IbardS

th-1

A, € o(W(ty), ..., A, € c(W(th1)), ® € B(S®™).

From this the weak convergence of the finite-dimensional distiributio,dto
those ofu®M follows. Thus, we have shown the weak convergendé(@fto oM,
which is equivarent to (3.6). O
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A.2 Proofs for section 4

Although the proposition 2 is proved by the completely same way as the single-
population case (theorem 2 and thorem 3 in Tanabe (2001)), we present a proof
for the convenience of the reader. We begin with proving a lemma that gives an

estimate for a moment ef%
o

Lemmal. Foranya > 1TT >0,iel,

1 .
E[—iio'ln >T]
O—(l

n

Clne—CiT Tn-«
BRI
T2l -3(T) TM8I(T) | T™21(T)
+ (-2 (T) + Tloo(T) + Yy Tt n=3) + n-2) )
T?lno(T) TM21(T) | T Hy(T)
—C(In(T) + Tlho(T) + T 4ot n-2) + ] ), (A.8)
H 00 00 @ Ci(Xi++Xn) q q
wherel,(T) _fo fo T T Xy - - A%,
n-fold
Therefore,
- 1, C
E[—; o >T] < ————. (A.9)
nZ:; oA (@ —1)Te1

Proof of lemma 1. In the proof of this subsection we drop thefisui for a
notational convenience. Set = o, — on-1,N > 1. Since{r,} are iid with the
exponential distribution of parametgrby computation of conditional expectation
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conditioned ornr_1, o2, We have

1
on

1
mlfnwn,lw'n—l]]

—CX 00 —C(T—0n-2) a—CX
——[E [f T ce d>co-n>T]+E[f ce © dx o < T]

= E[E[

+ o)t (x+T)et
Cze—cx c(T on-1) .
—E[ o)™ 1dx,o-n1>T]+E[ —dx,an_lsT]
n-1
C2 —C(T—0on- 1)e cX
- [f Ty dXom < Tl (A.10)

Moreover, by a similar computation we obtain

nTn
E[e T 0, < T] = chl ecT, (A.11)
e CX '
——  d T
[f Xt o it o> Tl
2 n-1
= " T (Inea(T) + TIo(T) + M P 12(T) (A.12)

I G

Hence we have (A.8) by substituting (A.11) and (A.12) for (A.10), and (A.9)
immediately follows from (A.8). O

Proof of proposition 2(i).  From the assumption, for ary > O there exists
T > 0,a > 0 such thaw(t) < at™® < &,t > T. Then by (3.3), folon,1 > T we
have

CrlC pl

CiCn a
Vi(on+1) < rlc P X(ow) # k
Px(x(V(on+1)) < N+1 _
’ CrC C..C
1- = p2(1 Vi(oni)) <1-— 2 p2(1 €), X(on) =
(A.13)

Set7 N = o(X(s), N(s), s < t). Then, by the strong Markov property &f
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w.r.t (7N} ® and (A.13),

P(X(on+1) =k, on > T)
= E[E[Lx@n.0)=0|Fonds on > T] = E[Pxk(V(on)); on > T]

C.C a C..C
< B[ - dsyg(X(ow) + (L= 2 (1= ) - T(X(en))i o > T]
N+1
C1C C..C
< ripl :;i +(1- r2 pz(l &) - L(X(ow): o > T]
c N+1
CiiC CC
O plE[Uf1 o> T+ (1= 221 )PX(on) =K. (AL4)
N+1

Na—CT
Noting P(X(on:+1) = koon < T) < Plon < T) = Z _(CT) °<
N
from (A.14) we have "

P(X(O'N+1) = k)
= P(X(O’N+1) = k, oN > T) + P(X(O-N+1) = k ON = T)

< S - ;crN+1>T]+(1—Cr2 (L= e)P(X(ow) = K)

c ONs1
Z (CT)”e cT

Hence, by use of lemma 1, we have

- B C aG1Cp
2, PO =W < e g (U oy D <

Then, by Borel-Cantelli’'s lemma, we concIuE’éle UN(X((J'n) = k) = 0, which
>1n>
implies P(lim 1. (X'() = 0) = 1. O
Proof of proposition 2(ii).  Since
P(lim L(X() = 0) = P(M=1Unn(X(o) = K) = M P(nan(L(X (o)) = 0))

it is suficient to showP(Npn(1k(X(om)) = 0) = 0, N > 1 for the proof.

9BecauseX is a right-continuous and stochastically continuous Markov process W:‘f&'.“}
(see theorem 7 and the following remark 1 in section 1.4 of Gihman and Skorohod(1975)).
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First we claim

M
P(mr“(l:N(x(O'n)) € S\{k})) < E[]-S\{k}(x(o_n)) rl (1_]6-Cr2Cp2Vk(0_n))]’ M > N.

n=N+1

(A.15)

For any bounded measurable functitf on SM-N-"+1 x R it holds by the
way to construcK that

E[ f(n)(x(o-N)’ co, X(OM=n)s OM=nt1, =+ > O M)l
X(O-N))9 S X(O-M—n—l), O-Ns S O-M]

= Z Px(O-anfl),l (M(om-n))

leS
f(n)(X(O-N)7 T X(O'M—n—l), Ia OM-n+1,""" O-M)’ 1<n<M-N-1
(A.16)

Then, notingP(v) > %Crchzvk,l # k by the assumption and using (A.16)
repeatedly we have (A.15).

By the assumptiony(t) > ag(t),t > T for somea > 0 and stficintly large
T > 0. Further, by applying the law of large numbergdq — o0-,_1}, there exists

No(w) > N such thaﬂanr(]w)

2> p > 0 for almost alkw € Q.

- El < p,n > No(w)| and (% — p)No(w) > T for

Then for a.a.w € Q, (% + )N > op(w) > % - p)No(w) > T and (o) >
1
ag(on) 2 ag(( +0)n). N = No(w).

o0 o0 l
Theref [ n) > - = by th ti .I.t.
erefore, smcez V(o) Z ag((C +p)N) = +oo0 by the assumption w.r

n=Np n=Np
M

g, l_[(l - %Crchzvk(o-n)) N 0 asM o for a.a. w € Q. This implies the

n=Np

integrant of the right-hand of (A.15) goes to zero a.s., and we have the conclusion
by the bounded convergence theorem. O

Proof of corollary 1. It is shown in the proof of theorem 1 in Samuelson
and Zhang (1992) that for any pure stratdgthat is iteratively strictly domi-
nated by another pure strateg)ys there exist,p > 0 and timeT > 0 such that
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uk(t) < e, t > T holds for any payfi monotonic dynamics. So the conculusion
immediately follows by proposition 2(ii). O

Proof of proposition 3(i).  First we claim thau(t) — u* imples thatGIj(u*) <
0,l e Slandin particuIaGIj(u*) =0ifl e C(u') for j e .

SupposeGﬂ](u*) > 0 for someh € Si. Then by the continuity oGﬂ], there
uy -
existse > 0 andT > O such that—'j‘(t) = Gl(u(t)) > &t > T. From this we
_ Uy .
haveu!(t) ./ oo and get to a contradiction. Furth&'(u) = 0 for | € C(u")

immediately follows sinc@j(u*) <0 impliesufj =0.

Next, we haveGi(u?) < G (u*) = 0,1 # k € S' sincek is a unique best reply
andG' is paydf monotonic. This showx;lI exponentially decrease to zero for
| #keS'. Sowe haveP(tImXi(t) = k) = 1 by proposition 2(i). |

Proof of proposition 3(ii). By the Lipschitz continuity oG!,
Gi(U) 2 Gj(u") = Ch(lIu’ = [l + flu™ = u™ ), (A.17)

where||ul| = %) ; |u|j| andCih is a Lipschitz constant.

Next, denote byB the set of all best replies if' exceptk againstu~. Then
h! € BandGi(u") = Gi(u) = O for| € BandG|(u*) < 0 forl € B°\ {k} because of
the paydt monotonicity ofG'.

Hence, by the continuity d&', there existg > 0 andT; > O for someh, € B
such that

(i)(t) = (G - G'hl)( )(t) < —P(—)(t) t>Ty,l e A%\ (k.
Up, Up, Un,

From this there exist8; > 0 such thau' (t) <,81u' (t) t>Ty 1l e A%\ {K].
Gl )y

Further, from the assumption that InéqT is finite, we have that there
u—u*
hJ
I

existsB; > 0 andT, > 0 such thafu)(t) — u’| < ,Bzu'hj M, t>TyleShj#icel.
|
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Thus, from (A.17) we have

Gh(W = -Ci2 ) U +2 > ui+ > b0 -y

leB 1£keB® l,j#
> ~Ch(2 )" U+ 281(m - 1Bl = 1y, + 52 )| u)
leB i

>-CiC, Y U, t=T=TivToheA

leB

whereC; = 2 + 28,(m — |B| — 1) + Bo(m—m).

So we have
PR I HINT)
leB leA leB

> -Co() WAt=T,

leB

whereC, = C;maxC : | € B}.
Therefore, there exists > 0 such that

i ESEBl#(T)
240> e s gt

o : i 1
But this implies that linb - u, (t) > CBl for someh, € B, and we conclude
t—oo

P(lim,_, 1n,(X'(t)) = 0) = 0 by proposition 2(ii). O o

A.3 Proofs for section 5

The proof of the proposition is carried out based on the following lemmas. Lemma
2 extends the ergodic theorem for a homogenuous discrete time Markov chain to a
homogenuous continuous time Markov chain. Lemma 3, together with lemma 4,
shows the time average of a Mckean process is estimated by that of a homogenu-
ous continuous time Markov chain by a coupling method (for details, see Lindvall
(1992)).

In the proof it is a key that. (u*) = r/(u),l,h € S', which assures the imitation
scheme of all individuals are common at the limit state, combined wjjth=
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pi.l.heSiel.

Lemma?2. LetY'(n),i €| be a collection of a mutually independent irreducible
Markov chain with state spac® and transition probability? = (P}.). SetZ'(t) =
YI(N'(1),i € | andN(t) = Z N'(t), denoting by, then -th jump time ofN(t)

i€l
with oo = 0. If Y'(n) is independent of the Poisson processig$),i € | and
P, > 0,h € S for everyi € |, thenY'(n) andZ'(t) have the same, unique, and

stationary distribution', and for any initial distributioni’€ @,

[,

xc

1
= P(im § 2, Tl (X(n-a))ds=

)

[,
xc

P(hllian % fo( ) 14(X(9))ds=

Y=LH=(....,h") €S,
wherel, =11 ®---® Iy andr, = oy — 07p-1.

Proof of lemma 2.  SinceNi(t),i € | are mutually independent Poisson pro-
cessesN(t) is also a Poisson process with intensity > ¢'. Thent,,n > 1 are
mutually independent and independenyt),i € | such thaP(r, > t) = e,

Note the irreduciblity ofy’ andP., > 0,h € S' assure that foh,| € S' there
exists an integemg(h, 1) > 0 such thaP}} > 0,n > ny. Then by the mutual inde-
pendence of',i € I, Y(m) = (Y}(m),---,Y"(m)) is also an irreducible Markov
chain with finite state spac® So fori € |, Y' has a unique stationary distribution
V' € int(a") such that¢', - - - ,»") is a unique stationary distribution 8fand

—00

N-1
P(lim %Z L) =[ ) =1Hes (A18)

for any initial distibutionu € ® (the second chapter of Hoel et al(1971)).
Theny' is a unique probability distribution that satisfiEgs vipn = vj,h € S,

which is equivarent te v', cP1, >= 0,h € S'. From this we find that' is also a

unique stationary distribution &, sinceZ' is a solution of MP for ¢P, U").
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AS o(r, 0 > 1) ando(Y(n), n > 0) are mutually independent, it holds that
E [t (Y~ D)o (Y(m), M 2 0)] = 1 (Y(m— 1)
El((7n - D)1 (Y(m- D)o (Y(m),m = 0)
- C—lle(Y(m— 1) < C—12 < +oo.

Then, by applying the law of large numbergtedy (Y(m-1)) w.r.t. P(:|o-(Y(m), m >
0)),

N N

P(IM (D" Tmlu(Z(m )~ D Iu(¥(m~ 1)} = 0(Y(m),n > 0))
in:lN m=1 § .
= P(fim S5 ndu(Y(M=1)) = > ~Lu(Y(M= 1)} = Oor(Y(m).n 2 0))
m=1 m=1

=1

Hence, combined with (A.18), we conclude

P( N|ian% fo " (Zm)dt = CV“‘)

—PI'lle —I'lNllY 1
= (Nugan;rm H( (le))—N[)an;E H(Y(m- 1))
N

= E[P(m (> Tmlu(Y(m - 1)

m=1

N
- %1H (Y(m=1))} = Olo(Y(m),m > 0))] = 1.
m=1

Under the assumption of proposition 4, for the limit statef u(t), denote by
P'"* transition probabilityP' (u*) for i € 1, that is,

L. COY

Pi;: c i i’ # .
rp(u)

1-Sen—g— h=
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SetC'(u) = {l € S' : pi(u") > 0} and denote byC'(u)| the cardinality
of C'(u). Further, in cases dC'(u’)] > 1, for 0 < & < min(P;;,1 # h,h €

- Pl o |
C'(u)} A min{—— . 7} and any fixed e C'(u), set transition probablitf*** and
Pe-onS',iel by

. _ P:; - &, h+Kk e Ci(u*)
P:ﬁ+ = P:; + (lCI(U*)| _ 1)8, h = ki ’
Pih» he C'(u)°

pie- _ P:;fe, hikf
h =P —(m-1), h=Kk"

We note thaP'*~ has a unique stationary state since it is positive. Moreover,
it is easily shown thaP'** and P* also have unique stationary states that are
probabilities orC'(u®).

Let Y+ (n)(Y'~(n)),i € | be a collection of a mutually independent Markov
chain onS' that is independent ¢! (t), i € 1} and determined b'** (respP'#").
SetX**(t) = Y (N'(D) (X~ (1) = Y~ (N'(1)) andX**(t) = (X** (1), - -, X™*(1))
(respX==(t) = (X*(1), -+ , X™(1))).

Then ,X**(X*7) has a unique stationary distributieri (resp.»'-), and for any
initial distributionu e ® andh' € C'i € 1,

e+

P( ,Lian% fo (e ()t = :“i y=1 (A.19a)

8

P( ,Lian% fo 14 (X5 (t))dt = C“‘ y=1 (A.19b)

(A.19b) immediately follows from lemma 2, but for (A.19a) we need a slight
modification of lemma 2.

SinceX** remains inC' once it enter€', seto, = inf{t > 0 : X**(t) e C',i €
1}. ThenP(o, < +0) = 1 since forh € C',

P(X** (t) =h,0<t<T)

_ Z PX** (1) =h,0<t<T,0n<T < o)
i* n .
B Z(l 3 r )n (CT) — e—r'*T \I 0.
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After enteringgl’, C', X** behaves as an irreducible Markov chaingih, C'.
Denote by?‘;“b’x” o-field generated by** andN stopped by , i.e.,?—‘JNgx” =
a{ X (t A op), N(t A o)), t > 0}. Then, by the strong Markov property bfand
Xe* and lemma 2,

H 1 N e+ _
P(lhanmeo 1,(X*7(t))dt =

— N(op) 1
N N-N(op)

7r8+
h N,X
1T

. N N X
= P(’\Illin00 f 1,(X°* (t))dt = . IT%’ )
7%

= P(lim ————~ f 1n(X** (B)dt = ”—ﬁN(aa),X”(ffa),aé)
N — N( ) c
=1

From this (A.19a) immediately follows.

Lemma 3. Under the assumption of proposition 4 the following statements
hold.
()If |IC(u)| > 1,i e I, for anys > 0 with
= min{ : 1 : (1—E)/\min{Piﬁ|,I #hy:iell,
(IC(uh)I+1)v (M +|Cu')-3)" ¢
(A.20)

O<e<e™

there existd > 0 such that for the Mckean proceXs.t. (Q(Vv); v € 8}),

PHT(IIm Nfo 1k (X(s))ds> l_[Vk'

< Pur(lim < f L(X**(9)ds> [ [ =0 Hes.
—00 T

(iFor anye > 0 with
i

r Py
1-—)A
(1~ --)Amin{——

O<e<e&™ =min 1,hesi}:iel}, (A.21)

mv3
there existd > 0 such that for the Mckean process.t. (Q(Vv); v € 8}),

Pur(lim %fa 1« (X(9))ds < l_[vk.

N—oco T

< Pyr(fim %f i L (X (9)ds< [ V) =0Hes.
—00 T
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HerePy 1 stands for the conditional probability conditionedX{T )(respX®*(T),
X*7(T)) = H € S, ando, is then— th jump time ofN(t) afterT.

Proof of lemma 3.  For the proof we costruct a Markov proceds X=* (X¢))
on'S x S such thatk 2 X, X+ £ X=*(X=-) and & (X(1)) < 1 (X (), (L (X (D) =
1k(resp X (1),)t > T,a.s. We only prove (i) since (ii) is shown in the same
way.

By the assumption of proposition 4 and the continuity.¢fl) in u, there exists
T > 0 for anye with 0 < £ < &* such that

r;“(gﬂ—% <gheS t>T. (A.22a)
ri,(u(t) pj(u(t)) ~ rpj(u) cehleS t>T (A.22b)
Ci Ci &, I, L= 1. .

Let (X', Xi*),i € | be a collection of a mutually independent Markov process
onS'xS' following tansition lawP' given by table (A.23) below wheN'(t) jumps
at timet, and setX, Xe+) = (X%, X%+, ..., X", X™*). The general rule to construct
P'is as follows.
First we give probabilityPL (u(t)) A P to transition b, i) — (I,1). Next
we give probabilityP,, (u(t)) — Pl to transition b,h) — (I,h’) or probability
Pier — P} (u(t)) to transition b, i) — (h,1), depending orP} (u(t)) > P or
Pier > PL(u(t)). Finally all residual probabilities are given to, {r) — (h, h).
By use of (A.22) it is easily cheked that the transition probability in the fol-
lowing table is so well defined farwith (A.20) thatP(Xi(o) = [|X/(c".—) = h) =
Pl (u(oh)) andP(X* (oh) = 11X (ol —) = h) = P+,
Because it holds that
Z 'f)i(h,l)(h',V)(U(O'in)) = Pihwu(o'in)a' €S
I’eSi

Z Plonarn(U(@h) = Pju(o)).he S'.
hreSi

from to with transition law
foranyh  (hK) (kK Piu()
(k) PLu(®) - Pl %k (A.232)
n Pifﬁ,l;ék
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forany h#k, (k h)

forany h#k, (h,h)

forany h#k, (hh)
hh+kh+h

(k k) PR .

(k.h) Pl (u(t) - Pies

(h,h) P(u®)

(.h) Pl (ut)) - P+l # hk
(L) PE1#hk

(k) P (ut)

(hK) P = PL0)
(1) 17 P 5 Pl(uD)
(I,h)y P, u) - Pyt 1 #hk
(L) Perl#hk

(kK Ppu(t)
EE E; E:F?E - P (u(t)
. tvh
(hh) 1- P - Per
— Zizhk Py (u(t))

(h,h) Py (u(t))

(1, h) PLI -PelL I #hh k
n Pl #h 'k

(A.23Db)

(A.23c)

(A.23d)

By the construction of the transition law, obviously stétehf with h # kin
S'x S' never occurs wherX(, X*) begins afl’ on the conditionX'(T) = Xi¢*(T).

So it holds that

P(im = f " LRyt < Tm = f " L (XY (OAYR(T) = K7(T) = H) = 1.
N—oo N T N—oo N T

Then we have

— ¢ (N .
Pur(fim f: L(X@)dt> [ v

< Pur(fim < f L@yt [ [ Hes,
—00 T

N

, : . — ¢ [ -
which shows the conclusion smEeLT(l\lllm Nf L (XZ*(t))dt = | |v§i+) =1
—00 T

from (A.19a).0 O
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Lemma 4. Foru* € ® with |[C'(u*)] > 1,i € I, there exists a positive sequence
en | 0 such that'>*, v~ — yi* i e |, wherev'®* (v~ y*) is a unique stati-
nary distribution of a Markov chain of which transition probabilityA$ (resp.
Pign_, Pi*).

Moreover even fou* € ® with |CI(u*)] = 1 for somej € I, there still exists a
positive sequence, | 0 such that's~ — '* i e |.

Proof of lemma 4. There exists a uique stationary distributigir (z's"~, 7'
of a Markov chain of which transition probability B**(resp. P*~, P*). By
compactness of!, there exist a positive sequengg| 0 and a’' € A’ such that
viert — v for alli € 1. Since it holds that'** P'ent = yient we havey'P™* = v/
by taking the limit. Hence we hawe' = v'** by the uniqueness of stationary
distribution of P'*.

By the same argument, we can choose a subsequgricé such thav*~
v'*. Futher, for/'*~ andv'* this argument is still valid in the case |&'(u*)| = 1
for somej € I. O

Proof of proposition 4. First we note thatr” is the unique stationary distribu-
tion c.tP*,i.e., 7" = u' in lemma 4 sincau* is a stationary population state of
(2.4).

For the case ofC'(u”)| > 1,i € I, let &, be a positive sequence in lemma 4.
Then by lemma 3, there existsTa > 0 such that foK € ®C'(u*)

PH T”(n |Fn |Im _L‘U'N lK(X(S))dSS ,\lll_)_mooﬁﬁ‘f 1K(X(S))ds< n Fn‘*’)

N—>oo

=1LHeS, (A.24)

wherec, is theN-th jump time ofN(t) after Ty,
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Therefore,

P < im & [ acxonss fim & [ aoxods< [ )

N—)oo

=P(| [ < lim ° fT Le(X(s)ds:< fim = fT " e xeyds< [
=pP([ [ ,L'an%fn L(X(8)ds < [m Ef: L(X(e)ds< [ [ v
IX(Tnh))

=1 (A.25)

Sinceyv'ert, vien~ — u'*, from (A.25) we obtain

P(lim % j; e (X(9)ds = [Tun=1 (A.26)

which is equivarent to

P(l\lligl 0-_];“ jo‘trN 1k (X(9))ds= 1—[ U:(T) =

ON 1
by — —,as.
yN_>c’

For anyT > O, there exists some positive intedéy(w) such thatoy, () <
T < onr(w)+1 for almost allw € Q. Hence we have

Nr T
1 foﬂ 1 (X(9))ds< %j(; 1« (X(9))ds< 0_1

O Nr+1 Nt

fOUNﬂl 1k (X(9))ds a.s..

. o 1
Then noting thatWN =3 means—Vt _, 1 asT — oo, we conclude
O Ny

P(Tliggo%fo L(X(9)ds=[ [up) =LK eaC(u)iel.

For the case wher€!(u”)| = 1 for somej € I, setd = {j € | : |CI(u")| = 1}.
Then we notice that in (A.25) the inequality in the lefthand still holds and the
inequality in the righthand can be replaced by one basgd;on; 1 (X'()). Thus
we have in place of (A.25)

p([ i < tim < fT (X< fm & [ L (X(9)ds

N—»oo

<[ [verxea) = (A.25)

i¢J
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which leads to
c 0N R
. C _ 1) — A.26
P(lim ~ j; L(X(9)ds=[ [ui=1)=1, (A.26))

by y:(fn‘ — ul’:f =1, j € J. From this we have the conculusion for the case. O
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