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Abstract

We study the imitational behavior, that is, learning or imitation of each individual

in a multi-population game when the population state converges to an equilibrium

state. Our study is based on the pathwise analysis of a continuous time Markov

chain that completely describes the imitational behavior of each individual.

We show that all individuals settle on a pure strategy in the long run if and only

if the pure strategy is a best reply to the limit state. Moreover, all individuals’ time

average of holding each strategy become equalized to the weight of the strategy at

the limit state to which the population state converges, because their schemes of

imitational behavior go to the same. Our results assert that it is inappropriate to

reason about each individual’s imitational behavior in the population based only

on the convergence of the population state.

JEL classification:C72,C79.

Keywords:imitational behavior,propagation of chaos, Mckean process,elimination

of strategy,ergodicity, equalization.



1 Introduction

In recent years many authers study imitation or learning models in which individ-

uals choose actions by imitating or learning others’. For example, Börgers and

Sarin (1997) and (2000), Cabrales (2000) and Gale et al.(1995) present models

in which individuals randomly select another individual and imitate his strategy

when the satisfaction level with the payoffs from their current strategies fall below

some target level.

Björnerstedt and Schlag (1996) and Schlag (1998) present models in which

the payoff of individuals are realized by a multi-armed bandit and they choose an

action (to pull an arm of the bandit) based upon the imformations about payoffs

of their own and another individual ramdomly sampled.

Weibull (1995) and Bj̈onerstedt and Weibull (1996) formulate social evolution

by imitation in a generic scheme and give a few specific examples of imitation

dyanamics. In these works it is shown that imitation or learning models can be

reduced to the replicator dynamics in certain settings.

In the works they model imitational behavior,i.e.,imitation or learning in stochas-

tic formulations, where individuals choose their strategies on the basis of some

probabilistic law, and deduce deterministic equations which describe dynamics

of population share of individuals to use each strategy. Then they get some im-

plications about the imitational behavior of inidividuals by the analysis of the

deterministic dynamics. This approach provides sufficient informations about ag-

gregated behavior in the populations. But it does insufficient informations about

the stochastic behavior of each individual such as whether the strategy of each

individual converges to some pure strategy or whether each individual goes to

behave alike by imitational behavior. This motivates us to analyze a stochastic

process itself that represents the imitational behavior of each individual.

In this article we construct and analyze the stochastic process that perfectly

describes the imitational behavior of each individual1. This is done in a generic

frame basically borrowed from Weibull (1995) and Björnersted and Weibull (1996).

1In this article we extend the stochastic pathwise approach of Tanabe (2001) in two aspects.
One is the extention from a single-population to a multi-population in the model. The other is
that results are explicitly applied to not only replicator dynamics but payoff monotonic dynamics
which contain the replicator dynamics as a special case.
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In the frame we considern populations with countable individuals who are in-

finitely lived. Each individual holds some pure strategy for some time interval,

and occasionally reviews and changes his strategy. This reset of the strategy is

based on some review rate function and choice probability function which may

depend on the payoff of his strategy against the current population state inn-player

game.

The stochastic process constructed for our analysis is a continuous time Markov

chain on the space of pure strategies. It jumps from one pure strategy to another,

following the choice probability when an arrival time of a Poisson process comes,

of which arrival rate is given by the review rate function. Each stochastic path

of the process represents the realized transition of each individual’s strategy, and

the marginal distribution of the process at each time does the population shares.

Therefore, by analyzing the process in a stochastic pathweise we can get implica-

tions about the realized imitational behavior of each individual.

To put it concretely, consider the following two questions in this article. In the

study of imitation or learning model, one of the most interesting issue is what the

outcome by imitation or learning is, that is, as the result of imitation or learning

process, to what equilibrium state the population state converges in the long run.

These questions are to investigate the behavior of each individual in the conver-

gence of the population state to such an equilibrium state.

The first question is on the converegence of the strategy taken by each individ-

ual to some pure strategy. When the population share of individuals who take pure

strategyk converges to one in the long run, does the strategy of each individual

converge to strategyk, that is, does each individual go to stick on strategyk ?

The second is on the time-averaged behavior of each individual. When the

state of population shares converges to some state which does not necessarily put

all weight on one pure strategy, what is each individual’s time average of holding

strategies, or in what ratio of time does each individual hold each strategy in other

words ?

In order to answer these questions, the analysis of deterministic dynamics

which represents the whole population behaviors are insufficient, but we need

to analyze the stochastic process in a pathwise.

Our main results are as follows. The first one is that under some assumptions,
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the strategy of each individual converges to some pure strategy if and only if the

strategy is a unique best reply to the limit state to which the population state

converges. In a single population model this means that even if the population

share goes on strategyk, the strategy of each individual doesnot converge to

strategyk unless (k, k) is a strict Nash equilibrium. So the answer to the first

question is “no” in a mathematical sence. This result asserts that it is inappropriate

to reason about each individual’s imitational behavior in the population based only

on the convergence of the population state.

The second is that each individual’s time average of holding time of a strategy

converges to the weight of the strategy at the limit state when the population share

of individuals converges to some state. This result is an extension of Birkoff’s

individual ergodic theorem in mathematics and tells us two things. One is that the

behavior of all individuals become equalized at least in the time average when the

population share goes to some state. The other is that the time average is given by

the limit state.

So the second result implies each individual goes to behave alike at least in

the time average by imitational behavior in the situation where the population

share converges. Consequently the time average of payoff for each individual

equals to that of the limit state. Concering about the first question, even if the

strategy of each individual does not converges to strategyk, the mean visiting

time to strategyk equals to one, and each individual stays on the strategy in all

time except occasional visits to other strategies if the population share goes on

strategyk.

The rest of this paper is organized as follows. Section 2 describes the model

and makes preparations for the anlysis. Section 3 constructs the stochastic process

called a Mckean process that describes the imitational behavior of each individual.

Section 4 and 5 present the results about the elimination of a strategy and the

ergodicity of the process, containing our two main results. Section 6 demonstrates

how our results work in applications. Section 7 concludes, and Appendix contains

all proofs.
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2 Formulation

In this section we model imitational behavior in a stochatic frame basically bor-

rowed from Weibul(1995) and Björnersted and Weibull (1995). Further, we set

some technical assumptions and specific types of imitational schemes to realize

regular selection dynamics.

2.1 Model

Here we give basic notations and briefly sketch the model. First we set an- player

game as follows.I = {1, . . . , n} is the set of players, andSi = {1, . . . ,mi} with

mi ≥ 2 be the pure-strategy set of playeri ∈ I using characteri, j for a player

andh, k, l for a pure strategy.4i is the mixed-strategy set onSi, and pure strategy

h ∈ Si is idetified with the unit vectorei
h = (0, . . . , 0, 1

h−th
,0, . . . , 0). We denote

the set of pure strategy profile×iSi by S and the polyhedron of mixed-strategy

profiles byΘ with open domainD ⊂ Rm containingΘ , wherem = m1 + · · · + mn.

πi(u) is the payoff to playeri ∈ I whenu = (u1, . . . , un) ∈ Θ is played.

Now we introduce a process of imitational behavior. In the preliminary, first

supposen populations withΛ individuals suffixed byλ = 1, . . . ,Λ who live for-

ever and interact each other. We identifyu ∈ Θ a population state profile, i.e.,ui
h is

the share of individuals on populationi who uses strategyh ∈ Si. Each individual

in each population holds some pure strategy for some time interval, and occasion-

ally reviews and changes his strategy based on review rate functionsr i
h : D→ R+

and choice probability functionspi
h : D → 4i , i ∈ I . We call (r i

h, p
i
h) imitation

scheme forh-individual in populationi and (r i , pi), i ∈ I simply imitation scheme.

Let Xi
λ(t) be the strategy ofλ-th individual in populationi at time t and de-

fine an empirical distribution onSi andS by U i(Λ)(t) =
1
Λ

Λ∑

λ=1

δXi
λ(t)

andU (Λ)(t) =

(U1(Λ)(t), . . . ,Un(Λ)(t)) respectively, whereδx stands forδ-measure atx. Then in-

dividuals change their strategies one by one in the following way.

Let Ni,1
λ (t), λ = 1, . . . ,Λ, i ∈ I be mutually independent Poisson processes in-

dependent ofXi
λ(0), λ = 1, . . . ,Λ, i ∈ I with intensity or arrival rater i

Xi
λ(0)

(U (Λ)(0)),

λ = 1, . . . ,Λ, i ∈ I respectively, and supposeσ1,the first jump time ofNi1,1
λ1

(t),

occurs before that ofNi,1
λ (t), λ , λ1, i , i1. i.e.,σ1 is “the first of the first jump
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times”. Then atσ1, only theλ1-th individual in populationi1 reviews his strategy

and chooses strategyXi1
λ1

(σ1) according to probabilityp
X

i1
λ1

(U (Λ)(0)).

Next, letNi,2
λ (t), λ = 1, . . . ,Λ, i ∈ I be mutually independent Poisson processes

independent of{Xi
λ(s), s≤ σ1, λ = 1, . . . ,Λ, i ∈ I } with intensityr i

Xi
λ(σ1)

(U (Λ)(σ1)),

λ = 1, . . . ,Λ, i ∈ I respectively, beginning atσ1, and supposeσ2, “the first of

the first jump times” is realized byNi2,2
λ2

(t). Then atσ2, only theλ2-th individual

in populationi2 reviews his strategy and chooses strategyXi2
λ2

(σ2) according to

probability p
X

i2
λ2

(U (Λ)(σ1)), and so on.

This reset procedure is the same for all individuals in each population. If

Xi
λ(0), λ = 1, . . . ,Λ are independently and identically distributed fori ∈ I , by the

law of large numbers,U (Λ)(t) converges to someu(t) = (u1(t), . . . , un(t)) ∈ Θ in

probability asN → ∞. Moreover, fori ∈ I Xi
λ(t), λ = 1, . . . ,Λ, the transition

of individuals’ strategy, go to represent a common stochastic processXi that is

constructed by review ratesr i(u(t)) and choice probabilitiespi(u(t)), i ∈ I and has

u(t) as a marginal distribution. This phenomenon is called apropagation of chaos,

and the common stochastic process is called aMckean process. The propagation

of chaos is equivarent to the law of large numbers forU (Λ) (see Tanaka (1983) and

Snitzman(1984)).

Now we resetnpopulations with countable individuals who review and change

thier strategies based on given imitation scheme (r i , pi), i ∈ I . The above argu-

ment suggests us to consider that the transition of all individuals is represented by
n⊗

i=1

∞⊗Xi, i.e., an infinite direct product of independent copies of the Mckean pro-

cess. Then, if we show some property of a stochastic path holds with probaility

one forXi, the realized transition of the strategy of each individual in poplationi

always represents that property. Thus, by analyzing the Mckean process in a path-

weise, we can understand the behavior of each inidividual in populations which

is stochastically realized based on review ratesr i(u(t)) and choice probabilities

pi(u(t)), i ∈ I .

We construct the Mckean process and prove the propagation of chaos in sec-

tion 3. After that we study the imitational behavior in an individual-wise based on

the analysis of the Mckean process.
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2.2 Assumptions

We assume that forh ∈ Si , i ∈ I the review rate functionr i
h : D→ R+ is Lipschitz

continuous with open domainD ⊂ Rm containingΘ, and that

there existCi
r1,C

i
r2 > 0 for i ∈ I such that

Ci
r1 ≥ r i

h(u) ≥ Ci
r2,h ∈ Si ,u ∈ Θ. (2.1)

We remark that we always have the left inequality of (2.1) by the continuity of

r i onΘ. So assumption (2.1) essentially assures that each individual in population

i reviews his strategy with positive probability even when the current state is on

the boundary ofΘ such asui
h = 1 for someh ∈ Si. This is an implicit assumption

that each individual seeks an opportunity to promote his payoff at any state, so

that we consider it a rational assumption2. In the following we always assume

(2.1) holds for alli ∈ I .

Further, forh ∈ Si , i ∈ I the choice probability functionpi
h : D → 4i is also

Lipschitz continuous with open domainD, and impose the following assumptions.

These assumptions are not strong, so that many models of imitational behavior

satisfy them.

(B1:i) There existsCi
p1 > 0 such that

Ci
p1u

i
h ≥ pi

lh(u),h , l ∈ Si ,u ∈ Θ.

(B2:i) There existsCi
p2 > 0 such that

pi
lh(u) ≥ Ci

p2u
i
h,h , l ∈ Si ,u ∈ Θ.

(B3:i) There exists Lipschitz continuous functionpi : D→ 4i such that

pi
lh(u) = pi

h(u),h, l ∈ Si ,u ∈ Θ.

Assumption (B1:i) and (B2:i) are technical ones for the analysis. Roughly

speaking, put together, they implypi
h(u) is in propotion toui

h. Assumption (B3:i)

prescribes that the choice probability is the same for all individuals in population

i. As is seen in a later counterexample, this assumption implicitly excludes the
2But an alternative assumtion that the review rate degenerates into zero at the state ofui

h = 1 is
also attractive.
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limit state at which the corresponding stochastic processX is a reducible Markov

chain. This assumption makes the analysis much easier.

2.3 Imitation schemes for regular selection dynamics

In section 3 it will be shown that the imitation dynamics given Weibull(1995)

and Bj̈ornersted and Weibull (1996) is deduced as the marginal distribution of

the Mckean process for the imitational behavior. On the other hand, regular se-

lection dynamics have been studied as one of important classes of dynamics for

social evolutions. In this subsection we set two classes of imitaion schemes for

the marginal distribution of the associated Mckean processes to represent regular

selection dynamics. Further we give a few specific examples of these classes.

2.3.1 Two classes of imitaion schemes

The regular selection dynamics are presented for application to social contexts

and more flexible than the replicator dynamics which are formulated originally in

a biological nature.

The regular selection dynamics onΘ is generally given by3

u̇i
h = Gi

h(u)ui
h,h ∈ Si , i ∈ I , (2.2)

whereGi
h,h ∈ Si , i ∈ I are Lipshcitz continuous functions with open domainD

containingΘ and satisfy

∑

l∈Si

Gi
l(u)ui

l = 0,u ∈ Θ, i ∈ I . (2.3)

Rmi
-valued functionGi is calledregular growth rate function, and the condition

(2.3) is to ensure the solution orbit remains inΘ.

A Rmi
-valued functionF on Θ is calledpayoff monotonic(weibull (1995)) or

simplymonotonic(Samuelson and Zhang (1992)) if for anyh,h′ ∈ Si ,u ∈ Θ, i ∈ I ,

πi(ei
h,u

−i) ≥ πi(ei
h′ ,u

−i) ⇐⇒ Fh(u) ≥ Fh′(u).

3See Samuelson and Zhang (1992) and subsection 5.5 in Weibull (1995).
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When regular growth rate functionGi is payoff monotonic, the associated se-

lection dynamics (2.2) is calledpayoff monotonic. We focus on two classes of

imitation schemes which are not necessarily disjoint. The both classes are suffi-

ciently broad so that the both of them realize all regular selection dynamics. That

is, the following imitation dynamics given by Weibull(1995) and Björnersted and

Weibull (1995) represent all regular selection dynamics4 when they are based on

imitation schemes in the both classes.

u̇i
h =

∑

l∈Si

r i
l (u)pi

lh(u)ui
l − r i

h(u)ui
h,h ∈ Si , i ∈ I . (2.4)

Class I. One is thatr i
h(u) = r,h ∈ Si for some positive constantr andpi

lh(u) =

αi
lh(u)ui

h,h , l ∈ Si for someRmi

+ -valued, Lipschitz continuous functionαi
lh with∑

l,h∈Si

αi
hl(u)ui

l ≤ 1,u ∈ Θ. That is, the review rate is a common constant among in-

dividuals in populationi, and the probabibility of changing strategy is propotional

to population shares. For this case, (2.4) is reduced to

u̇i
h = r

∑

l,h∈Si

(αi
lh(u) − αi

hl(u))ui
lu

i
h,h ∈ Si , i ∈ I . (2.5)

Class II. The other is of a type such that only a choice probability fixed by

pi
lh(u) = ui

h,h, l ∈ Si , i ∈ I . That is, the selection of the strategy is random

according to the frequency of the current population state. For the case, (2.4) is

reduced to

u̇i
h = (

∑

l∈Si

r i
l (u)ui

l − r i
h)uh,h ∈ Si , i ∈ I . (2.6)

4In fact, if we set

r i
h(u) = r, pi

lh(u) = (Gi
h(u) + r)ui

h/r,h ∈ Si , i ∈ I

for somer > max
h,i

sup
u∈Θ
{−Gi

h(u)}, (2.5) turns into (2.2). Further, setting

r i
h(u) = α −Gi

h(u), pi
lh(u) = ui

h

for someα > max
h,i

sup
u∈Θ

Gi
h(u), transforms (2.6) into (2.2).
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Then the growth rate functions are payoff monotonic if and only if so are{−r i , i ∈
I }.

2.3.2 Examples

Formally any regular selection dynamics can be obtained as the marginal distribu-

tion of a Mckean process by two simple forms such thatr i
h(u) = r or pi

lh(u) = ui
h.

Here we present specific examples of imitational behavior model in the both

forms.

Propotional imitation. This is based on a “multi-armed bandit” approach

(Schlag(1998), Bj̈ornerstedt and Schlag(1996)). Given increasing Lipschitz con-

tinuous functionf on R, for h ∈ Si , i ∈ I , , let Pi
h(u) be a continuous function

from Θ into the space5 of all probability distributions onR+ such thatPi
h(u) is

supported with interval [ω,ω](0 ≤ ω < ω) and has meanPi
h(u) is f (πi(h,u−i)).

When the current state isu(t) at time t , the payoff for eachh-individual on

populationi is independently drawn fromPi
h(u(t)) across individuals and time (by

multi-armed bandit). When a reviewing time comes to anh-individual at timet , he

randomly samples another individual in populationi according to the probability

ui(t).

Now suppose his payoff is xi
h at the current state and he samples anh′-individual

whose payoff is xi
h′. Then he switches his strategy fromh to h′ with probability

xi
h′ − xi

h

ω − ω only if xi
h′ > xi

h, where
1

ω − ω is called aswitching rate.

Settingαi
hh′(u) =

1
ω − ω

∫
xi

h′>xi
h
(xi

h′ − xi
h)P

i
h(u)(dxi

h)P
i
h′(u)(dxi

h′),h
′ , h ∈ Si for

u ∈ Θ, it holds thatpi
hh′(u) = αi

hh′(u)ui
hh′ with 0 < αi

hh′(u) < 0 for h′ , h ∈ Si in

this model.

Further, if we assume the review rater i
h(u) = r,h ∈ Si , i ∈ I , the imitation

scheme for this model is of class I and satisfies assumption (B1:i) and (B2:i) for

5The space is topologized with the total variation norm.
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i ∈ I 6 . Noting

αi
hh′(u) − αi

h′h(u) =
1

ω − ω( f (π(h′,u−i)) − f (π(h,u−i))),

for (2.4) we have

u̇i
h =

r
ω − ω( f (πi(ei

h,u
−i)) −

∑

l∈Si

f (πi(ei
l ,u
−i)))ui

h. (2.7)

(2.7) is a payoff monotonic dynamics and especially represents replicator dy-

namics in the case off (x) = x.

The proportional imitation with switching rate
xi

h′ − xi
h

ω − ω is optimal , i.e, it max-

imizes the increase in expected payoffs among all behavioral rules in the single-

person sampling model (proposition 1 in Schlag(1998)).

Reinforcement learning. This is a model in which the review rate depends

on the level of satisfaction obtained by the payoff (Börgers and Sarin (1997),

Cabrales(2000),Gale et al.(1995) and section 4.3.3.2 in Veda-Redonde(1996)).

When the current state isu(t) at timet , eachh-individual compares the utility

f (πi(ei
h,u

−i(t))) obtainend from the payoff πi(ei
h,u

−i(t)) to some target level of sat-

isfactionµ. If f (πi(ei
h,u

−i(t))) ≥ µ, he retains strategyh. Otherwise he randomly

chooses a new starategy according to the current population stateui(t). Here the

satisfaction level is uniformly distribued on [ω,ω] with ω < minh,i,u f (π(ei
h,u

−i), ω <

maxh,i,u f (π(ei
h,u

−i), and independent across individual and time.

For the reason why the satisfaction level is random, there two possible inter-

pretations. One is that the mood of an individual (whether she is ambitious or not)

is randomly determined (section 4.3.3.2 in Veda-Redonde[ ]). The other is that

the satisfaction level is actually fixed while the utility obtainend from the payoff

is perturbated by random shock.

In this scenario the average review rate and the choice probability are taken as

r i
h(u) =

ω − f (π(ei
h,u

−i))

ω − ω andpi
h(u) = ui

h. Then we have (2.7) again. The imitation

scheme of this examle is of class II and satisfies all assumptions in subsection 2.2.

6Sinceαi
hh′ (u) is a continuous function onΘ, (B2:i) is satisfied from the compactness ofΘ.
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3 Mckean process

In this section we construct a Mckean process onS perfectly describing imita-

tional behavior such that the probability distribution at timet itself is represented

by imitation dynamics.This is done in a martingale formulation7 , following Shiga

and Tanaka(1985). Further we prove the law of large numbers and the propaga-

tion of chaos forΛ-particle system. First we construct a continuous-time Markov

chain in a martingale formulation.

Givenr i , pi , setmi ×mi-matrix valued functionqi onΘ by

qi(h,h′; u) =
r i

h(u)pi
hh′(u), h′ , h

0, h′ = h
.

Then define bounded linear operatorsQi(u),u ∈ Θ on B(Si) andQ(u),u ∈ Θ on

B(S) by

Qi(u)φ(h) =
∑

l∈Si

qi(h, l; u)(φ(l) − φ(h)),h ∈ Si , φ ∈ B(Si),

Q(u)ϕ(h1, . . . , hn) =
∑

i∈I
∑

l∈Si
qi(hi , l; u) 4i

l ϕ(h1, . . . , hn), ϕ ∈ B(S),

where4i
lϕ(h1, . . . , hn) = ϕ(h1, . . . , l

i−th
, . . . , hn) − ϕ(h1, . . . , hn), andB(Si) (B(S))

is the Banach space of all bounded functions onSi (resp. S) equipped with the

supremum norm‖ · ‖.
Let Xi(X) be a stochastic process defined on a probability space (Ω,F ,P) of

that sample paths areSi(resp. S)-valued right-continuous step functions, and set

F Xi

t = σ(Xi(s); s≤ t)(resp.F X
t = σ(X(s); s≤ t)).

Definition 1. For Θ- valued measurable functionv(t) andv̄i ∈ 4i, Xi is asolution

of the martingale problem (MP)for ({Qi(v(t))}, v̄) if Xi satisfies

φ(Xi(t)) −
∫ t

0
Qi(v(s))φ(Xi(s))ds is aF Xi

t −martingale f or anyφ ∈ B(Si),
(3.1)

L(Xi(0)) = v̄i ,

whereL(Xi(0)) stands for the probability law of (Xi(0)).

7For details of a martingale problem, see Ethier and Kurtz (1985).
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Definition 2. For aS- valued measurable functionv(t) and av̄, X is asolution of

the martingale problem (MP)for ({Q(v(t))}, v̄) if X satisfies

ϕ(X(t)) −
∫ t

0
Q(v(s))ϕ(X(s))ds is aF X

t −martingale f or anyϕ ∈ B(S),
(3.2)

L(X(0)) = v̄.

In the above definitions{Qi(v(t))}({Q(v(t))}) is called agenerator, andXi(X)(X(t)

is said to begeneratedby {Qi(v(t))}(resp. {Q(v(t))}). A solution of MP for

({Qi(v(t))}, v̄i) is a Markov process onSi of that transition rate froml to h at time

t is given byqi(l,h; v(t)), and a solution of MP for ({Q(v(t))}, v̄) is composed of

mutually independent solution of MP for ({Qi(v(t))}, v̄i), i ∈ I .

For any fixedci > Ci
r1, define transition probability matrixPi(u),u ∈ Θ on Si

by

Pi
hh′(u) =

1
ci

r i
h(u)pi

hh′(u), h′ , h

1−∑
l,h

1
ci

r i
h(u)pi

hh′(u), h′ = h
. (3.3)

Then a solution of the MP is simply constructed as follows. LetXi(0) be inde-

pendentSi-valued random variable with the distribution ¯vi ,andNi(t) be a Poisson

process on{0,1, . . . } with intensityci independent ofXi(0), denoting byσi
n the

n-th jump time ofNi(t). SetXi(t) = Xi(0) for σi
0 = 0 ≤ t < σi

1. At t = σi
1, X(σi

1)

is randomly chosen according to the transition lawPi(v(t)), and setXi(t) = Xi(σi
1)

for σi
1 ≤ t < σi

2. Repeating this prcedure we obtainSi- valued processXi(t),

which is a solution of the MP ({Qi(v(t))}, v̄i).

Let Xi(t), i ∈ I be mutually independentSi-valued Markov processes con-

structed in the above, and setX(t) = (X1(t), . . . ,Xn(t)). Then it is shown thatX(t)

is a unique solution of MP for ({Q(v(t))}, v̄) (see the proof of proposition 1(i)).

Now we give the definition of a Mckean process. It is a Markov process that

moves under the influence of the distribution of itself at each time, and therefore

it represents a stochatic phenomenon with interactions.

Definition 3. For ū ∈ Θ, X is aMckean process correspnding to(abbreviated as

12



c.t.) ({Q(v); v ∈ Θ}) with L(X(0)) = ū if X is a solution of the MP,

ϕ(X(t)) −
∫ t

0
Q(u(s))ϕ(X(s))ds is aF X

t −martingale f or anyϕ ∈ B(S),
(3.4)

L(X(t)) = u(t) andL(X(0)) = ū.

WhenQ(v) is given by an imitation scheme (r i , pi), i ∈ I , we say a Mckean pro-

cess isassociated withan imitation scheme (r i , pi), i ∈ I . From now on, by a

Mckean process we mean a Mckean process associated with an imitation scheme

(r i , pi), i ∈ I .

In definition 3 a generator{Q(u(t))} depends onu(t) , the marginal distribution

of a Mckean process itself while a generator{Q(v(t))} does on exogenously given

v(t) in definition 2. This difference characterizes a Mckean process as a stochastic

process that represents a stochastic phenomenon with interactions.

If we substituteϕ = 1h,h ∈ Si in (3.4) and take the expectation, we have

ui
h(t) − ūi

h

=
∫ t

0

∑
l[r

i
l (u(s))pi

lh(u(s))ui
l(s) − r i

h(u(s))ui
h(s)ds,h ∈ Si , i ∈ I . (3.5)

By the continuity ofr i andpi, (3.5) is equivarent to

u̇i
h =

∑

l∈Si

r i
l (u)pi

lh(u)ui
l − r i

h(u)ui
h,u

i
h(0) = ūi

h,h ∈ Si , i ∈ I .

This is the imitation dynamics (2.4) given by Weibull(1995) and Björnersted

and Weibull (1995). The unique existence of a solution for (2.4) is guaranteed by

the Lipschitz continuity ofr i , pi , i ∈ I . So the marginal distribution of the Mckean

process is a unique solution of the imitation dynamics (2.4).

Now we consider anΛ-particle sysytem, which is a Markov processX(Λ) =

(X1(t), . . . ,XΛ(t)) onS⊗Λ generated by the following operater based onQ(u):

Q(Λ)Φ(H1, . . . ,HΛ) =

Λ∑

λ=1

Qλ(
1
Λ

Λ∑

λ=1

H1
λ, . . . ,

1
Λ

Λ∑

λ=1

Hn
λ)Φ(H1, . . . ,HΛ),Φ ∈ B(S⊗Λ),

whereQλ( 1
Λ

∑Λ
λ=1 H1

λ, . . . ,
1
Λ

∑Λ
λ=1 Hn

λ) stands for the operation ofQ( 1
Λ

∑Λ
λ=1 H1

λ, . . . ,
1
Λ

∑Λ
λ=1 Hn

λ) w.r.t. Hλ.

13



Let W be the set of allS- valued right continuous step functions with left lim-

its, and defineσ- field of W byFt = σ(w(s); s≥ t) andF = ∨t≥0Ft for coordinate

processw(t),w ∈W. We denote byµ andP(Λ) the probability measures on (W,F )

induced by the Mckean process and on (WΛ,F Λ) induced byX(Λ) respectively.

Then{P(Λ),Λ > 1} is said to beµ-chaoticif

lim
Λ→∞

< P(Λ), ϕ1⊗· · ·⊗ϕM⊗1⊗· · ·⊗1 >=

M∏

λ=1

< µ, ϕλ > f or anyϕλ ∈ B(W). (3.6)

(3.6) impliesP(Λ) weakly converges toµ⊗Λ, and is equivarent to the law of num-

bers forU (Λ),i.e., limΛ→∞U (Λ) = µ in probability (Snitzman(1984)) and Tanaka

(1983)), whereU (Λ) =
1
Λ

Λ∑

λ=1

δXλ .

The following proposition is proved by an application of a standard argument

to a multiple state-space case (see Shiga and Tanaka (1985), Sznitman (1984) and

Tanaka (1982)).

Proposition 1. Givenr i , pi , i ∈ I , the following statements hold.

(i) For any ū = ū1 ⊗ · · · ⊗ ūn ∈ Θ there exists a unique Mckean processX c.t.

{Qv; v ∈ Θ} with L(X(0)) = ū ∈ Θ such thatui(t) = L(Xi(t)) is a unique solution

of (2.4).

(ii)If L(XΛ(0)) = ū⊗Λ for ū ∈ Θ, then for anyε > 0 andT(0 < T < ∞) P(Λ) is

µ-chaotic, and

lim
Λ→∞

P( sup
0≤t≤T

‖U (Λ)(t) − u(t)‖ > ε) = 0, (3.7)

whereu(t) = L(w(t); µ).

Proposition 1 says thatΛ-particle system generated byQ(Λ) converges in law

to the infinite direct product of the Mckean process. This fact enables us to study

each individual’s imitational behavior in populations with countable individuals

based on the analysis of the Mckean process as already stated.

From the proof of proposition 1(i), we note that the Mckean process is con-

structed based on review ratesr i(u(t)) and choice probabilitiespi(u(t)), i ∈ I with

u(t), the unique solution of (2.4). Further, we remark that by replacingr i by αr i

14



for all i ∈ I with any postive constantα , we have a Mckean process which is

different from the original only in time scale. So the difference by a constant mul-

tiple factor of the review rates does not have any influence on our results.

4 Elimination of strategy

One of the most important problems concering dynamics for imitational behavior

is whether it eliminates suboptimal strategies in the long run. In this section we

study the elimination of a strategy on the Mckean process.

First we state a proposition for the solution of the Markov process generated

by {Q(v(t)}, which gives sufficient conditions for a strategy to vanish and not to

vanish with probability one. Then as a corollary of the proposition, we present

our first main result that a necessary and sufficient condition for a stochastic path

of the Mckean process to converge to a pure strategy is that the pure strategy is a

unique best reply in the limit state.

Proposition 2. For k ∈ Si, the following statements hold forX generated by

{Q(v(t)}.
(i)Under (B1:i) and (B2:i), if lim

t→∞
vi

k(t)t
α < +∞ with α > 1, thenP(lim

t→∞
1k(X

i(t)) =

0) = 1.

(ii) Under (B2:i), if lim
t→∞

vi
k(t)

g(t)
> 0 with positive decreasing functiong such that

∑∞
n=1 g(bn) = +∞ for any constantb > 0, thenP(lim

t→∞
1ki (X

i(t)) = 0) = 0.

Proposition 2.(i) implies that if the choice probability for strategyk vanishes

sufficiently fast, each individual stops to take strategyk after a finite time interval.

On the contrary, proposition 2.(ii) implies that even when the choice probability

converges to zero, if the speed of the convergence is not so fast, each individual

never stops to take strategyk.

The following corollary is proved by use of proposition 2.(i) and a result of

Samuelson and Zhang (1992) about payoff monotonic dynamics. For example, the

marginal distribution of the Mckean process associated with an imitation scheme

15



of class II such that{−r i} is payoff monotonic, represents payoff monotonic dy-

namics. Then, due to the corollary, each individual stops to take suboptimal strat-

egyk dominated by some pure strategy after a finite time interval in the imitation

scheme.

Corollary 1. Suppose that the marginal distribution of a Mckean process consti-

tutes a payoff monotone dynamics. If pure strategyk is stricly iteratively domi-

nated by another pure strategy inSi, then for the Mckean processP(lim
t→∞

1k(X(t)) =

0) = 1 for any initial state ¯u ∈ int(Θ).

The following main result is also proved as a corollary of proposition 2. Roughly

speaking, in proposition3(ii) the assumption that lim
u→u∗

G j
l (u)uj

l

Gi
h(u)ui

h

is finite implies

|uj
l (t)−u∗ j

l | is proportional toui
h(t) whenu(t) approaches tou∗. (i) and (ii) together

say that under this technical assumption each individual in populationi goes to fix

on strategyk if and only if strategyk is a unique best reply to the limit state. Then

(iii) immediately follows from (i) and (ii).

Proposition 3. Suppose that the marginal distributionu(t) of the Mckean process

represents a payoff monotonic dynamics and that lim
t→∞

u(t) = u∗ with u∗i = ei
k. Then

the following statements hold.

(i)If k ∈ Si is a unique best reply againstu∗−i, thenP(lim
t→∞

Xi(t) = k) = 1.

(ii)If for any l ∈ S j , j , i ∈ I there existshj
l , k ∈ Si that is a best reply against

u∗−i and lim
u→u∗

u̇j
l (u)

u̇i
h j

l

(u)
= lim

u→u∗

G j
l (u)uj

l

Gi
h j

l

(u)ui
h j

l

are finite, thenP(lim
t→∞

1i
h2

(Xi(t)) = 0) = 0 for

someh2 , k ∈ Si that is a best reply againstu∗−i .

(iii)For n = 1, i.e., a pairwise contest case in a single population,P(lim
t→∞

X(t) =

k) = 1 if and only if (k, k) is a strict Nash equilibrium.

Consider a case where the marginal distribution of the Mckean process rep-

resents a replicator dynamics in a single population. Letk be an evolutionarily

stable strategy that does not constitute a strict Nash equilibrium.

As is well known, in a replicator dynamics any evolutionarily stable strategy

16



is asymptotically stable. Therefore, if the initial population state belongs to the

attractive domain ofek, the population state goes toek by the imitational behavior

of individuals. But due to proposition 3(iii), each individual never fixes on strategy

k in spite of our expectation that he surely does. Unfortunately the evolutionary

stability does not insure the convergence of strategy in an individual-wise.

For example, when we model imitational behavior in our society by a repli-

cator dynamics, we apt to think each member in our society goes to take a pure

strategy that is evolutionarily stable on the basis of the convergence of trajectory

to the strategy. But proposition 3(iii) says that this reasoning is false.

5 ergodicity

As is well known, ergodic theorem is generally formulated as the time average of a

function of a stationary process converges to the state-space average of that. In our

case by Birkhoff’s individual ergodic theorem (theorem 3 in Skorohod (1989)),

lim
t→∞

1
t

∫ t

0
f (X(s))ds =< ū, f > a.s. for a Mckean process associated with an

imitation scheme in class II, starting from any stationary state ¯u ∈ int(Θ). This is

equivarent to that the average sojourn time at any strategy converges to the weight

of the strategy at ¯u for almost all paths.

From the viewpoint of imitational behavior, we can interpret this fact as fol-

lows. For an imitation scheme in class II, the imitation scheme of all individuals

in every population are the same at any stationary state, i.e.,r i
h(ū) = r i

l (ū),h, l, ∈ Si

andpi
h(ū) = pi

l(ū),h, l, ∈ Si for everyi ∈ I . Therefore, all individual’s time average

of holding each strategy are equalized.

In this section we extend this result to a case where the marginal distribution

of a Mckean process staring from a state that may be non-stationary converges to

some state. The next proposition is our second main result.

Proposition 4. For everyi ∈ I , assume that (B3:i) holds and that the marginal

distributionu(t) of a Mckean process converge tou∗ ∈ Θ such thatr i
h(u
∗) is in-

dependent ofh, i.e.,r i∗ = r i
l (u
∗), l ∈ Si for somer i∗ > 0. Then for the Mckean
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process,

P(lim
t→∞

1
t

∫ t

0
ϕ(X(s))ds=< ϕ, u1∗

h1 · · · un∗
hn >) = 1, ϕ ∈ B(S), (5.1)

where< Φ,u > stands for the expectation ofΦ w.r.t. u.

In particular

P(lim
t→∞

1
t

∫ t

0
1H(X(s))ds= u1∗

h1 · · · un∗
hn) = 1,H = (h1, . . . , hn) ∈ S, (5.2)

where 1H = 1h1 ⊗ · · · ⊗ 1hn,

P(lim
t→∞

1
t

∫ t

0
πi(X(s))ds= πi(u∗)) = 1, i ∈ I . (5.3)

In a case where a Mckean process begins from a stationary state, proposition

4 is reduced to Birkhoff’s individual ergodic theorem. So proposition 4 is an

extension of the theorem. In a case where an imitation scheme is of class I with

pi
lh = pi

h, l,h ∈ Si , i ∈ I or of class II withu∗ ∈ int(Θ), the assumptions are

satisfied, and proposition 4 can be applied.

Under the assumption of proposition 4, whenu(t) approaches tou∗, the review

rate of all individual converge to the same rate, and they goes to behave in the

same way in every populaton. Then the behavior of all individuals in time average

become equalized in each populaton, independently of other population. The time

average of holding each strategy coincides the weight of it at the limit state.

Consequently, the time average of the payoff realized for each individual is

given by the average payoff at the limit state as is seen in (5.3). Whenu(t) goes to

u∗, of course
1
t

∫ t

0
πi(u(s))dsdoes toπi(u∗), that is, the time average of the average

payoff in each population at timet converges to that at the limit state. (5.3) shows

that not only as for the average payoff in each population, but also as for each

individual’s realized payoff in each population, the time average converges to the

average payoff at the limit state.

The following counter example shows that without assumption (B3:i) that pi
lh

does not depend onl, a case where a Mckean processX is a reducible Markov
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chain is allowed, and then the ergodicity does not hold. Assumption (B3:i) im-

plicitly excludes such a case.

Counter example. SetS = {1,2,3,4} and consider the Mckean process asso-

ciated by the following review rate function and choice probability function:

rh(u) = 1,h ∈ S,

phl(u) =


2ul , l = 1,2

0, l = 3,4
i f h = 1,2


0, l = 1,2

0,2ul l = 3,4
i f h = 3,4

.

Then (2.4) turns into

u̇h =
2(u1 + u2)uh − uh, h = 1,2
2(u3 + u4)uh − uh, h = 3,4

.

This shows any ¯u ∈ 4 with ū1 + ū2 = 1
2 is a stationary state. Hence, by lemma 2 in

subsection A.3, for the Mckean process starting from such a stationary state ¯u,

P(lim
t→∞

1
t

∫ t

0
1l(X(s))ds= ūl , l = 1,2|X(0) = h) = 1,h = 1,2,

P(lim
t→∞

1
t

∫ t

0
1l(X(s))ds= ūl , l = 3,4|X(0) = h) = 1,h = 3,4.

So we have

P(lim
t→∞

1
t

∫ t

0
1l(X(s))ds= ūl , l = 1,2) = P(X(0) = 1,2) =

1
2
,

which shows (5.2) does not hold in this case.

6 Applications

In this section we demonstrate how our results are applied cases where the marginal

distribution of a Mckean process represents a replicator dynamics in 2-populations.
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Consider the following imitation scheme for two populations in classs I. LetA

andB be normalized payoff matrixes for population 1 and 2 :

A =

(
a1 0
0 a2

)
, B =

(
b1 0
0 b2

)
.

Denote by (x1, x2)((y1, y2)) a element of41(resp. 42), and set review rate functions

and choice probability functions as follows:r1
h(u) = |a1|+|a2|+1−π1(e1

h,u
2), p1

lh(u) =

u1
h,h = 1,2 andr2

h(u) = |b1| + |b2| + 1− π2(u1,e2
h), p

2
lh(u) = u2

h,h = 1,2. Then the

marginal distribution of the Mackean process (X,Y) is a solution of the following

replicator dynamics in the two-populations.

ẋ1 = (a1y1 − a2y2)x1x2, ẋ2 = −ẋ1, (6.1a)

ẏ1 = (b1x1 − b2x2)y1y2, ẏ2 = −ẏ1. (6.1b)

We analyze the pathwise behavior of the Mckean process (X,Y) when the marginal

distribution converges to limit states in two cases.

Case of a1 = 0,a2 > 0,b1 > 0 and b2 = 0. By (6.1) x1(y1) monotonicaly de-

creases (resp. increases) from any ( ¯x, ȳ) ∈ Θ along (
x2

x̄2
)b1 = (

y1

ȳ1
)a2, and the limit

state (x∗1, y
∗
1) is such that

(x∗1, y
∗
1) =

(1− 1− x̄1

ȳa2/b1
1

,1), (1− x̄1)b1 < ȳa2
1

(0,1), (1− x̄1)b1 = ȳa2
1

(0,
ȳ1

(1− x̄1)b1/a2
), (1− x̄1)b1 > ȳa2

1

.

When (x∗1, y
∗
1) = (1− 1− x̄1

ȳa2/b1
1

,1), strategy 1 and 2 are indifferent for population

1 while and strategy 1 is a unique best reply for population 2.

Then, notingr1
1(1 − 1− x̄1

ȳa2/b1
1

,1) = r1
2(1 − 1− x̄1

ȳa2/b1
1

,1) = a2 + 1, by proposition 3

and 4 we have

P(lim
t→∞

1
t

∫ t

0
11(X(s))ds= 1− 1− x̄1

ȳa2/b1
1

) = 1,P(lim
t→∞

Y(t) = 1) = 1,
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if (1 − x̄1)b1 < ȳa2
1 . Similary if (1− x̄1)b1 > ȳa2

1 ,

P(lim
t→∞

X(t) = 2) = 1,P(lim
t→∞

1
t

∫ t

0
11(Y(s))ds=

ȳ1

(1− x̄1)b1/a2
) = 1.

For the case of (1− x̄1)b1 = ȳa2
1 , (0,1) is not a strict Nash equilibrium,and

lim
(x1,y1)→(0,1)

| ẏ1

ẋ1
| = |b1

a1
| < +∞. So by proposition 3(ii) and 4,

P(lim
t→∞

X(t) = 2) = P(lim
t→∞

Y(t) = 1) = 0,

P(lim
t→∞

1
t

∫ t

0
12(X(s))ds= 1) = P(lim

t→∞
1
t

∫ t

0
11(Y(s))ds= 1) = 1.

In the case where the initial population state on the curve (1− x̄1)b1 = ȳa2
1 , the

population state converges to (0,1) while (X,Y) never does to (2,1). But it holds

that

P(lim
t→∞

1
t

∫ t

0
π1(X(s),Y(s))ds= a2, lim

t→∞
1
t

∫ t

0
π2(X(s),Y(s))ds= b1) = 1,

and all individuals equally gain the maximum time-average of payoff.

Case of a1 < 0,a2 < 0,b1 = 0 and b2 < 0. This case contains the simplified

ulitimatum game of Gale et al.(1995) (also see section 4.8 in Vega-Redonde (1996)).

As the previous case, the limit state (x∗1, y
∗
1) is such that

(x∗1, y
∗
1) =

(0,1), x̄−b2
1 < (

ȳ1

ŷ1
)−a2(

ȳ1

ŷ1
)−a1

(1, ŷ1), x̄−b2
1 = (

ȳ1

ŷ1
)−a2(

ȳ1

ŷ1
)−a1

(1, y∗1), (0 < y∗1 < ŷ1), x̄−b2
1 > (

ȳ1

ŷ1
)−a2(

ȳ1

ŷ1
)−a1

,

whereŷ1 =
a2

a1 + a2
.

Since (0,1) is a strict Nash equilibrium, by proposition 3(i),

P(lim
t→∞

X(t) = 2, lim
t→∞

Y(t) = 1) = 1 for x̄−b2
1 < (

ȳ1

ŷ1
)−a2(

ȳ1

ŷ1
)−a1.

For x̄−b2
1 = (

ȳ1

ŷ1
)−a2(

ȳ1

ŷ1
)−a1, x∗1 = 0, y∗1 = 1 are not a unique best reply to each

other8. By proposition 4,

P(lim
t→∞

1
t

∫ t

0
11(X(s))ds= 1, lim

t→∞
1
t

∫ t

0
11(Y(s))ds= ŷ1) = 1.

8Since lim
(x1,y1)→(1,ŷ1)

| ẏ1

ẋ1
| = +∞, proposition 3(ii) can not be applied.
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For x̄−b2
1 > (

ȳ1

ŷ1
)−a2(

ȳ1

ŷ1
)−a1, by proposition 3(i) and 4,

P(lim
t→∞

X(t) = 1) = 1,P(lim
t→∞

1
t

∫ t

0
11(Y(s))ds= y∗1) = 1.

7 Concluding remarks.

We have analyzed the imitational behavior of each individual in a multi-population

model when the population state converges to an equilibrium state. Our approach

is characterized by the following two points. One is that it is not to analyze the

behavior of the population shares individuals, but to do the stochatic behavior of

each individual itself. The other is that it has a generic frame so that it is applicable

to braod classes of imitation or learning models.

We have shown that each individual does settle on a pure strategy in the long

run if and only if the pure strategy is a best reply to the limit state. Moreover,

all individuals’ average holding time of each strategy becomes equalized to the

weight of the strategy at the limit state because their schemes of imitational be-

havior goes to the same.

Here we remark that these results heavily depends on the implicit assumption

that individuals are myopic and memoryless. In our model individuals choose

their strategies depending only on the current population state. This leads the

stochastic process representing the behavior of each individual ro having Markov

property, which plays an essential role in the proof of the results. The results

for a model with individuals being not myopic or having memory might become

different from ours.
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A Appendix

A.1 Proofs for section 3

Proof of proposition 1(i). We prove the proposition in three steps. This is a

simple extension of the proof of lemma 2 in Shiga and Tanaka (1985) to a multiple

state-space case.

1st step. In the first step we show thatX(t) constructed by (3.3) is a unique

solution of MP for ({Q(v(t))}, v̄).

For wi ,w ∈W andh ∈ Si, set

N(t,h; wi) =
∑

s≤t 1(wi(s) = h,wi(s) , wi(s−)),

Ñ(t,h; wi) = N(t,h; wi) −
∫ t

0
qi(wi(s),h; v(s))ds.

ThenÑ(t, l; wi) is aPX-martingale by lemma 3 in Shiga and Tanaka (1985).

Sincewi(t), i ∈ I have no common jumps, it holds that

ϕ(w(t)) − ϕ(w(0)) =
∑

i∈I
∫ t

0

∑
l∈Si 4i

lϕ(w(s−))N(ds, l; wi).

Then we have for anyϕ ∈ B(S)

ϕ(w(t)) − ϕ(w(0))−
∫ t

0
Q(v(s))ϕ(w(s))ds

=
∑

i∈I
∫ t

0

∑
l∈Si 4i

lϕ(w(s−)))Ñ(ds, l; wi)ds,
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and we concludeX(t) is a solution of MP ({Q(v(t))}, v̄).

Next, we show the uniqueness of the MP. For any solutionX of the MP,

EX[ϕ(w(t)); As] − EX[ϕ(w(s)); As]

=
∫ t

s

∑
i∈I

∑
h1,...,hn

∑
l,hi [qi(hi , l; v(s1))(ϕ(h1, . . . , l, . . . , hn) − ϕ(h1, . . . , hn))

·PX((w(s1) = (h1, . . . , hi , . . . , hn)) ∩ As)]ds1,As ∈ Fs.

If EX[ϕ(w(s)); As] = EY[ϕ(w(s)); As] for any pair of solutions (X,Y) , then

|EX[ϕ(w(t)); As] − EY[ϕ(w(t)); As]|
≤

∫ t

s
2(

∑
i C

i
r1) ‖ ϕ ‖ · ‖ PX((w(s1) ∈ ·) ∩ As) − PY((w(s1) ∈ ·) ∩ As) ‖var ds1,

where‖ µ ‖var stands for the total variation norm of set functionµ on the field of

all subsets ofS,i.e.,‖ µ ‖var=
∑

H∈S
|µ({H})|.

This imples

‖ PX((w(t) ∈ ·) ∩ As) − PY((w(t) ∈ ·) ∩ As) ‖var

≤
∫ t

s
2(

∑
i C

i
r1) ‖ · ‖ PX((w(s1) ∈ ·) ∩ As) − PY((w(s1) ∈ ·) ∩ As) ‖var ds1,

(A.1)

Hence by Gronwall’s inequality we have

‖ PX((w(s1) ∈ ·) ∩ As) − PY((w(s1) ∈ ·) ∩ As) ‖var= 0, s< ∀s1 < t,

which shows the uniqueness of the MP for ({Q(v(t))}, v̄).

2nd step. We show the following equation has a uniqueΘ-valued solution for

anyu ∈ Θ.

< u(t), ϕ > − < u(0), ϕ >=
∫ t

0
< u(s),Q(u(s))ϕ > ds, ϕ ∈ B(S),

u(0) = u, (A.2)

By linearity (A.2) is equivarent to

u(t)k1...kn − u(0)k1...kn

=
∫ t

0

∑
i∈I

∑
l,ki [qi(l, ki; u(s))u(s)k1,...,l,...,kn − qi(ki , l; u(s))u(s)k1,...,ki ,...,kn]ds,

K = (k1, . . . , kn) ∈ S,
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whereuk1...kn(t) = u(t)({k1, . . . , kn}).
This is a

∏
i m

i-dimensional integral equation foru(t)k1...kn, k1 ∈ S1, . . . , kn ∈ Sn

which has a unique solution sinceqi(h, k; ·),h, k ∈ Si , i ∈ I are Lipschitz contin-

uous. Further it is easily verified thatu(t)k1...kn, k1 ∈ S1, . . . , kn ∈ Sn constitute a

probability. So A.2 has a uniqueΘ- valued solution.

Similary for anyΘ-valued measurable functionv(t) and u ∈ Θ, we have a

uniqueΘ-valued solution for

< u(t), ϕ > − < u(0), ϕ >=
∫ t

0
< u(s),Q(v(s))ϕ > ds, ϕ ∈ B(S),

u(0) = u, (A.3)

3rd step. Let u(t) be the unique solution of A.2 foru = ū1⊗· · ·⊗ūn andX be the

solution of MP for ({Q(u(t))}, ū). Thenũ(t) = L(X(t)) solves A.3 withv(t) = u(t).

This meansu(t) = ũ(t) and X is a Mckean process c.t. ({Q(v); v ∈ Θ}) with

L(X(0)) = ū because of the uniqueness of the solution of A.3. The uniqueness of

the Mckean process is also proved from that of A.3 and MP for ({Q(u(t))},u).　�

Proof of proposition 1(ii). The proof proceeds in a fairly standard way as

Sznitman (1984) and Tanaka (1983). LetW′ be the space ofΘ-valued right con-

tinuous paths with left limits. ThenU (Λ)(t) is a Markov process with sample path

in W′. Denote byP′(Λ) the probability measure onW′ induced byU (Λ)(t). We

prove the law of large numbers forU (Λ) (3.7), and then (3.6) easily follows.

First we show{P′(Λ)} is tight. Noting

U (Λ)(t) =

(
1
Λ

∑

λ

1e1
1
(w1

λ(t)), . . . ,
1
Λ

∑

λ

1ei
h
(wi

λ(t)), . . . ,
1
Λ

∑

λ

1en
mn

(wn
λ(t))),

and

1ei
h
(wi

λ(t2)) − 1ei
h
(wi

λ(t1)) =

∫ t2

t1

∑

l∈Si

(1ei
h
(l) − 1ei

h
(wi

λ(s))N(ds, l; wi
λ),
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we have

E(Λ)[‖U (Λ)(t2) − U (Λ)(t1)‖2|F Λ]

=
1

Λ2
E(Λ)[

∑

i

∑

h∈Si

(
∑

λ

∫ t2

t1

∑

l∈Si

(1ei
h
(l) − 1ei

h
(wi

λ(s))N(ds, l; wi
λ))

2|F Λ]

≤ E(Λ)[
∑

i

∑

h∈Si

(
∑

λ

∫ t2

t1

∑

l∈Si

N(ds, l; wi
λ)

2|F Λ] (A.4)

Let Ni
λ, i ∈ I ,1 ≤ λ ≤ Λ be mutually independent Poisson processes with

intensityci independent ofXλ(0),1 ≤ λ ≤ Λ. ThenX(Λ)(t) is constructed by the

jump time of Ni
λ, i ∈ I and transition laws (Pi

Xi
λ(t)l

(U (Λ)(t)))l∈Si , i ∈ I . Thereore,

since it holds that

E(Λ)[(
∫ t2

t1

∑

l∈Si

N(ds, l; wi
λ))

2|F Λ] ≤ ci |t2 − t1|(ci |t2 − t1| + 1),

E(Λ)[(
∫ t2

t1

∑

l∈Si

N(ds, l; wi
λ))(

∫ t2

t1

∑

l∈Si

N(ds, l; wi
κ))|F Λ] ≤ ci2|t2 − t1|2,

by (A.4) we have

E(Λ)[‖U (Λ)(t2) − U (Λ)(t1)‖2|F Λ] ≤ C(T)|t2 − t1|,0 ≤ t1 ≤ t2 ≤ T,

whereC(T) is a positive constant depending onT.

From this we have

E′(Λ)[‖w(t1)−w(t2)‖2‖w(t2)−w(t3)‖2] ≤ C2(T)|t1−t3|2,0 ≤ t1 ≤ t2 ≤ t3 ≤ T, (A.5)

which shows the tightness of{P′(Λ)} (theorem 15.6 in Billingsley(1968)).

Next we show for any limit pointP′(∞) of {P′(Λ)}

F(w)

=< w(t), ϕ > − < w(0), ϕ > −
∫ t

0
< w(s),Q(w(s))ϕ > ds

= 0,P′(∞) − a.s., ϕ ∈ B(S). (A.6)

Let {P′(Λl )} be a subsequence converging toP′(∞) and set

Mλ(t) = ϕ(wλ(t)) − ϕ(wλ(0))−
∫ t

0
< wλ(s),Q(

1
Λl

∑

κ

wκ(s))ϕ > ds.
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ThenMλ is aP′(Λl )-martingale, and

< Mλ,Mκ >= 0, λ , κ. (A.7)

Because

Mλ(t) =
∑

i∈I

∫ t

0

∑

h∈Si

4i
hϕ(wλ(s−)))Ñ(ds,h; wi

λ)ds,

whereÑ(t,h; wi
λ) = N(t,h; wi

λ)−
∫ t

0
qi(wi

λ(s),h; U (Λl )(s))ds, andwi
λ andw j

κ have no

common jumps forλ , κ.

By using (A.7) we have

E′(∞)F2 = lim E(Λl ) 1

Λ2
l

|
∑

λ

Mλ(t)|2 = lim
1
Λl

E(Λl )M1(t) = 0,

which imples (A.6).

Sincew(0) = ū by the law of large numbers, from the uniqueness of solution

of (A.2) we havew(t) = u(t),0 ≤ t ≤ T,P′(∞)-a.s., i.e.,P′(∞) = δµ, which implies

(3.7).

For the propagation of chaos, letP(Λ)
M be the marginal probability ofP(Λ) on

the firstWM. Then, we can have the tightness ofP(Λ)
M as (A.5).

Further, by using (3.7) we can show inductively that for anyε > 0 there exists

Λn > 0 andCn−1(T) > 0 such that forΛ > Λn

|EΛ
M[Φ(w(tn)); At1 ∩ · · · ∩ Atn−1] − Eµ⊗M

[Φ(w(tn)); At1 ∩ · · · ∩ Atn−1]|
≤ Cn−1(T)‖Φ‖ε + 2‖Φ‖M(

∑

i

Ci
r1

mi)

·
∫ tn

tn−1

‖PΛ
M((w(s) ∈ ·) ∩ At1 ∩ · · · ∩ Atn−1) − µ⊗M((w(s) ∈ ·) ∩ At1 ∩ · · · ∩ Atn−1)‖vards,

At1 ∈ σ(w(t1)), . . . ,Atn−1 ∈ σ(w(tn−1)),Φ ∈ B(S⊗M).

From this the weak convergence of the finite-dimensional distiributions ofP(Λ)
M to

those ofµ⊗M follows. Thus, we have shown the weak convergence ofP(Λ)
M to µ⊗M,

which is equivarent to (3.6). �
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A.2 Proofs for section 4

Although the proposition 2 is proved by the completely same way as the single-

population case (theorem 2 and thorem 3 in Tanabe (2001)), we present a proof

for the convenience of the reader. We begin with proving a lemma that gives an

estimate for a moment of
1
σiα

n

.

Lemma 1. For anyα > 1,T > 0, i ∈ I ,

E[
1
σiα

n

;σi
n > T]

=
cn

i e
−ciT

α − 1
[

Tn−α

(n− 1)!

+(In−1(T) + T In−2(T) +
T2In−3(T)

2!
+ · · · + Tn−3I2(T)

(n− 3)!
+

Tn−2I1(T)
(n− 2)!

)

−ci(In(T) + T In−1(T) +
T2In−2(T)

2!
+ · · · + Tn−2I2(T)

(n− 2)!
+

Tn−1I1(T)
(n− 1)!

), (A.8)

whereIn(T) =

∫ ∞

0
· · ·

∫ ∞

0︸        ︷︷        ︸
n− f old

e−ci (x1+···+xn)

(x1 + · · · + xn + T)α−1
dx1 · · · dxn.

Therefore,

∞∑

n=1

E[
1
σiα

n

;σi
n > T] ≤ ci

(α − 1)Tα−1
. (A.9)

Proof of lemma 1. In the proof of this subsection we drop the suffix i for a

notational convenience. Setτn = σn − σn−1,n ≥ 1. Since{τn} are iid with the

exponential distribution of parameterc, by computation of conditional expectation
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conditioned onσn−1, σn−2, we have

E[
1
σαn

;σn > T]

= E[E[
1

(τn + σn−1)α
1τn+σn−1|σn−1]]

=
1

α − 1
[E[

∫ ∞

0

c2e−cx

(x + σn−2)α−1
dx;σn > T] + E[

∫ ∞

0

c2e−c(T−σn−2)e−cx

(x + T)α−1
dx;σn−2 ≤ T]

−E[
∫ ∞

0

c2e−cx

(x + σn−1)α−1
dx;σn−1 > T] + E[

∫ ∞

0

ce−c(T−σn−1)

Tα−1
dx;σn−1 ≤ T]

−E[
∫ ∞

0

c2e−c(T−σn−1)e−cx

(x + T)α−1
dx;σn−1 ≤ T]. (A.10)

Moreover, by a similar computation we obtain

E[e−c(T−σn);σn ≤ T] =
cnTn

n!
e−cT, (A.11)

E[
∫ ∞

0

e−cx

(x + σn−2)α−1
dx;σn > T]

= cne−cT(In+1(T) + T In(T) +
T2In−1(T)

2!
+ · · · + Tn−1I2(T)

(n− 1)!
. (A.12)

Hence we have (A.8) by substituting (A.11) and (A.12) for (A.10), and (A.9)

immediately follows from (A.8). �

Proof of proposition 2(i). From the assumption, for anyε > 0 there exists

T > 0,a > 0 such thatvk(t) ≤ at−α < ε, t > T. Then by (3.3), forσN+1 > T we

have

PX(σN),k(v(σN+1)) ≤
Cr1Cp1

c
vk(σN+1) ≤

Cr1Cp1

c
a

σα
N+1

,X(σN) , k

1− Cr2Cp2

c
(1− vk(σN+1)) < 1− Cr2Cp2

c
(1− ε),X(σN) = k

.

(A.13)

SetF X,N
t = σ(X(s),N(s), s ≤ t). Then, by the strong Markov property ofX
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w.r.t. {F X,N
t } 9 and (A.13),

P(X(σN+1) = k, σN > T)

= E[E[1(X(σN+1)=k)|FσN ]; σN > T] = E[PX(σN),k(v(σN));σN > T]

≤ E[
Cr1Cp1

c
a

σα
N+1

· 1S\{k}(X(σN)) + (1− Cr2Cp2

c
(1− ε)) · 1k(X(σN));σN > T]

≤ E[
Cr1Cp1

c
a

σα
N+1

+ (1− Cr2Cp2

c
(1− ε)) · 1k(X(σN));σN > T]

≤ Cr1Cp1

c
E[

a
σα

N+1

;σN+1 > T] + (1− Cr2Cp2

c
(1− ε))P(X(σN) = k). (A.14)

Noting P(X(σN+1) = k, σN ≤ T) ≤ P(σN ≤ T) =

∞∑

n=N

(cT)ne−cT

n!
,

from (A.14) we have

P(X(σN+1) = k)

= P(X(σN+1) = k, σN > T) + P(X(σN+1) = k, σN ≤ T)

≤ Cr1Cp1

c
E[

a
σα

N+1

;σN+1 > T] + (1− Cr2Cp2

c
(1− ε))P(X(σN) = k)

+

∞∑

n=N

(cT)ne−cT

n!
.

Hence, by use of lemma 1, we have

∞∑

N=1

P(X(σN) = k) ≤ c
Cr2Cp2(1− ε)(1 +

aCr1Cp1

(α − 1)Tα−1
+ cT) < +∞.

Then, by Borel-Cantelli’s lemma, we concludeP( ∩
N≥1
∪

n≥N
(X(σn) = k) = 0, which

impliesP(lim
t→∞

1ki (X
i(t)) = 0) = 1. �

Proof of proposition 2(ii). Since

P(lim
t→∞

1k(X(t)) = 0) = P(∩N≥1∪n≥N(X(σn) = k)) = lim
N→∞

P(∩n≥N(1k(X(σn)) = 0)),

it is sufficient to showP(∩n≥N(1k(X(σn)) = 0) = 0,N ≥ 1 for the proof.

9BecauseX is a right-continuous and stochastically continuous Markov process w.r.t.{F X,N
t }

(see theorem 7 and the following remark 1 in section 1.4 of Gihman and Skorohod(1975)).
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First we claim

P(∩M
n=N(X(σn)) ∈ S\{k})) ≤ E[1S\{k}(X(σn))

M∏

n=N+1

(1− 1
c
Cr2Cp2vk(σn))],M > N.

(A.15)

For any bounded measurable functionf (n) on SM−N−n+1 × Rn
+, it holds by the

way to constructX that

E[ f (n)(X(σN), · · · ,X(σM−n), σM−n+1, · · · , σM)|
X(σN)), · · · ,X(σM−n−1), σN, · · · , σM]

=
∑

l∈S
PX(σM−n−1),l(v(σM−n))

· f (n)(X(σN), · · · ,X(σM−n−1), l, σM−n+1, · · · , σM),1 ≤ n ≤ M − N − 1.
(A.16)

Then, notingPlk(v) ≥ 1
c
Cr2Cp2vk, l , k by the assumption and using (A.16)

repeatedly we have (A.15).

By the assumption,vk(t) ≥ ag(t), t ≥ T for somea > 0 and sufficintly large

T > 0. Further, by applying the law of large numbers to{σn − σn−1}, there exists

N0(ω) > N such that|σn(ω)
n
− 1

c
| < ρ,n ≥ N0(ω)| and (

1
c
− ρ)N0(ω) > T for

1
c > ρ > 0 for almost allω ∈ Ω.

Then for a.a.ω ∈ Ω, (
1
c

+ ρ)n > σn(ω) ≥ 1
c
− ρ)N0(ω) > T andvk(σn) ≥

ag(σn) ≥ ag((
1
c

+ ρ)n),n ≥ N0(ω).

Therefore, since
∞∑

n=N0

vk(σn) ≥
∞∑

n=N0

ag((
1
c

+ρ)n) = +∞ by the assumption w.r.t.

g,
M∏

n=N0

(1 − 1
c
Cr2Cp2vk(σn)) ↘ 0 asM ↗ ∞ for a.a. ω ∈ Ω. This implies the

integrant of the right-hand of (A.15) goes to zero a.s., and we have the conclusion

by the bounded convergence theorem. �

Proof of corollary 1. It is shown in the proof of theorem 1 in Samuelson

and Zhang (1992) that for any pure strategyk that is iteratively strictly domi-

nated by another pure strategy∈ S there existθ, ρ > 0 and timeT > 0 such that
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uk(t) < θe−ρt, t > T holds for any payoff monotonic dynamics. So the conculusion

immediately follows by proposition 2(ii). �

Proof of proposition 3(i). First we claim thatu(t) → u∗ imples thatG j
l (u
∗) ≤

0, l ∈ S j and in particularG j
l (u
∗) = 0 if l ∈ C(u∗i) for j ∈ I .

SupposeG j
h(u
∗) > 0 for someh ∈ S j. Then by the continuity ofG j

h, there

existsε > 0 andT > 0 such that
u̇j

h

uj
h

(t) = G j
h(u(t)) > ε, t ≥ T. From this we

haveuj
h(t) ↗ ∞ and get to a contradiction. FurtherG j

l (u
∗) = 0 for l ∈ C(u∗ j)

immediately follows sinceG j
l (u
∗) < 0 impliesu∗ j

l = 0.

Next, we haveGi
l(u
∗) < Gi

k(u
∗) = 0, l , k ∈ Si sincek is a unique best reply

andGi is payoff monotonic. This showsui
l exponentially decrease to zero for

l , k ∈ Si . So we haveP(lim
t→∞

Xi(t) = k) = 1 by proposition 2(i). �

Proof of proposition 3(ii). By the Lipschitz continuity ofGi
h,

Gi
h(u) ≥ Gi

h(u
∗) −Ci

h(‖ui − ui∗‖ + ‖u−i − u−i∗‖), (A.17)

where‖u‖ =
∑

l, j |uj
l | andCi

h is a Lipschitz constant.

Next, denote byB the set of all best replies inSi exceptk againstu∗−i. Then

hj
l ∈ B andGi

l(u
∗) = Gi

k(u
∗) = 0 for l ∈ B andGi

l(u
∗) < 0 for l ∈ Bc \ {k} because of

the payoff monotonicity ofGi.

Hence, by the continuity ofGi, there existsρ > 0 andT1 > 0 for someh1 ∈ B

such that

(
u̇i

l

ui
h1

)(t) = (Gi
l −Gi

h1
)(

ui
l

ui
h1

)(t) ≤ −ρ(
ui

l

ui
h1

)(t), t ≥ T1, l ∈ Ac \ {k}.

From this there existsβ1 > 0 such thatui
l(t) ≤ β1ui

h1
(t), t ≥ T1, l ∈ Ac \ {k}.

Further, from the assumption that lim
u→u∗

G j
l (u)uj

l

Gi
h j

l

(u)ui
h j

l

is finite, we have that there

existsβ2 > 0 andT2 > 0 such that|uj
l (t) − u∗ j

l | < β2ui
h j

l

(t), t ≥ T2, l ∈ S j , j , i ∈ I .
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Thus, from (A.17) we have

Gi
h(u) ≥ −Ci

h(2
∑

l∈B
ui

l + 2
∑

l,k∈Bc

ui
l +

∑

l, j,i

|uj
l (t) − u∗ j

l |)

≥ −Ci
h(2

∑

l∈B
ui

l + 2β1(m
i − |B| − 1)ui

h1
+ β2

∑

l, j,i

ui
h j

l

)

> −C1C
i
h

∑

l∈B
ui

l , t ≥ T = T1 ∨ T2,h ∈ A,

whereC1 = 2 + 2β1(mi − |B| − 1) + β2(m−mi).

So we have
∑

l∈B
u̇i

l > −(
∑

l∈A
C1C

i
lu

i
l)(

∑

l∈B
ui

l)

≥ −C2(
∑

l∈B
ui

l)
2, t ≥ T,

whereC2 = C1 max{Ci
l : l ∈ B}.

Therefore, there existsC > 0 such that

∑

l∈B
ui

l(t) ≥
∑

l∈B ui
l(T)

1 + C(t − T)
∑

l∈B ui
l(T)

, t ≥ T.

But this implies that lim
t→∞

t · ui
h2

(t) ≥ 1
C|B| for someh2 ∈ B, and we conclude

P(lim t→∞ 1h2(X
i(t)) = 0) = 0 by proposition 2(ii). 　 �

A.3 Proofs for section 5

The proof of the proposition is carried out based on the following lemmas. Lemma

2 extends the ergodic theorem for a homogenuous discrete time Markov chain to a

homogenuous continuous time Markov chain. Lemma 3, together with lemma 4,

shows the time average of a Mckean process is estimated by that of a homogenu-

ous continuous time Markov chain by a coupling method (for details, see Lindvall

(1992)).

In the proof it is a key thatr i
h(u
∗) = r i

l (u
∗), l,h ∈ Si, which assures the imitation

scheme of all individuals are common at the limit state, combined withpi
lh =
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pi
h, l,h ∈ Si , i ∈ I .

Lemma 2. Let Yi(n), i ∈ I be a collection of a mutually independent irreducible

Markov chain with state spaceSi and transition probabilityP = (Pi
lh). SetZi(t) =

Yi(Ni(t)), i ∈ I andN(t) =
∑

i∈I
Ni(t), denoting byσn then -th jump time ofN(t)

with σ0 = 0. If Yi(n) is independent of the Poisson processesNi(t), i ∈ I and

Pi
hh > 0,h ∈ Si for every i ∈ I , thenYi(n) andZi(t) have the same, unique, and

stationary distributionνi, and for any initial distribution ¯u ∈ Θ,

P( lim
N→∞

1
N

∫ σN

0
1H(X(s))ds=

∏
νi

hi∑
ci

)

= P( lim
N→∞

1
N

N∑

n=1

τn1H(X(σn−1))ds=

∏
νi

hi∑
ci

) = 1,H = (h1, . . . , hn) ∈ S,

where 1H = 1h1 ⊗ · · · ⊗ 1hn andτn = σn − σn−1.

Proof of lemma 2. SinceNi(t), i ∈ I are mutually independent Poisson pro-

cesses,N(t) is also a Poisson process with intensityc =
∑

ci. Thenτn,n ≥ 1 are

mutually independent and independent ofYi(n), i ∈ I such thatP(τn > t) = e−ct.

Note the irreduciblity ofYi andPi
hh > 0,h ∈ Si assure that forh, l ∈ Si there

exists an integern0(h, l) > 0 such thatPin
lh > 0,n ≥ n0. Then by the mutual inde-

pendence ofYi , i ∈ I , Y(m) = (Y1(m), · · · ,Yn(m)) is also an irreducible Markov

chain with finite state spaceS. So fori ∈ I , Yi has a unique stationary distribution

νi ∈ int(4i) such that (ν1, · · · , νn) is a unique stationary distribution ofY and

P( lim
N→∞

1
N

N−1∑

n=0

1H(Y(n)) =
∏

νi
hi ) = 1,H ∈ S (A.18)

for any initial distibutionū ∈ Θ (the second chapter of Hoel et al(1971)).

Thenνi is a unique probability distribution that satisfies
∑

l∈S ν
i
l plh = νi

h,h ∈ Si,

which is equivarent to< νi , cP1h >= 0,h ∈ Si. From this we find thatνi is also a

unique stationary distribution ofZi, sinceZi is a solution of MP for (cPi , ūi).
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Asσ(τn,n ≥ 1) andσ(Y(n),n ≥ 0) are mutually independent, it holds that

E[τm1H(Y(m− 1))|σ(Y(m),m≥ 0)] =
1
c

1H(Y(m− 1))

E[{(τm− 1
c

)1H(Y(m− 1))}2|σ(Y(m),m≥ 0)]

=
1
c2

1H(Y(m− 1)) ≤ 1
c2
< +∞.

Then, by applying the law of large numbers toτm1H(Y(m−1)) w.r.t. P(·|σ(Y(m),m≥
0)),

P( lim
N→∞

1
N
{

N∑

m=1

τm1H(Z(σm−1)) −
N∑

m=1

1
c

1H(Y(m− 1))} = 0|σ(Y(m),n ≥ 0))

= P( lim
N→∞

1
N
{

N∑

m=1

τm1H(Y(m− 1))−
N∑

m=1

1
c

1H(Y(m− 1))} = 0|σ(Y(m),n ≥ 0))

= 1.

Hence, combined with (A.18), we conclude

P( lim
N→∞

1
N

∫ σN

0
1H(Z(t))dt =

∏
νi

hi

c
)

= P( lim
N→∞

1
N

N∑

m=1

τm1H(Z(σm−1)) = lim
N→∞

1
N

N∑

m=1

1
c

1H(Y(m− 1)))

= E[P( lim
N→∞

1
N
{

N∑

m=1

τm1H(Y(m− 1))

−
N∑

m=1

1
c

1H(Y(m− 1))} = 0|σ(Y(m),m≥ 0))] = 1.

�

Under the assumption of proposition 4, for the limit stateu∗ of u(t), denote by

Pi∗ transition probabilityPi(u∗) for i ∈ I , that is,

Pi∗
lh =

r i∗pi
h(u
∗)

ci
, h , l

1−∑
l,h

r i∗pi
l(u
∗)

ci
, h = l

.
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Set Ci(u∗) = {l ∈ Si : pi
l(u
∗) > 0} and denote by|Ci(u∗)| the cardinality

of Ci(u∗). Further, in cases of|Ci(u∗)| > 1 , for 0 < ε < min{Pi∗
lh, l , h,h ∈

Ci(u∗)} ∧min{ Pi∗
hh

mi − 1
} and any fixedki ∈ Ci(u∗), set transition probablityPiε+ and

Piε− onSi, i ∈ I by

Piε+
lh =

Pi∗
lh − ε, h , ki ∈ Ci(u∗)

Pi∗
lk + (|Ci(u∗)| − 1)ε, h = ki

Pi∗
lh, h ∈ Ci(u∗)c

,

Piε−
lh =

Pi∗
lh + ε, h , ki

Pi∗
lh − (mi − 1)ε, h = ki .

We note thatPiε− has a unique stationary state since it is positive. Moreover,

it is easily shown thatPiε+ and Pi∗ also have unique stationary states that are

probabilities onCi(u∗).

Let Yiε+(n)(Yi−(n)), i ∈ I be a collection of a mutually independent Markov

chain onSi that is independent of{Ni(t), i ∈ I } and determined byPiε+(resp.Piε−).

SetXiε+(t) = Yiε+(Ni(t)) (Xiε−(t) = Yiε−(Ni(t))) andXε+(t) = (X1ε+(t), · · · ,Xnε+(t))

(resp.Xε−(t) = (X1ε−(t), · · · ,Xnε−(t))).

Then ,Xε+(Xε−) has a unique stationary distributionνi+ (resp.νi−), and for any

initial distributionū ∈ Θ andhi ∈ Ci , i ∈ I ,

P( lim
N→∞

1
N

∫ σN

0
1H(Xε+(t))dt =

∏
νiε+

hi

c
) = 1 (A.19a)

P( lim
N→∞

1
N

∫ σN

0
1H(Xε−(t))dt =

∏
νiε−

hi

c
) = 1 (A.19b)

(A.19b) immediately follows from lemma 2, but for (A.19a) we need a slight

modification of lemma 2.

SinceXiε+ remains inCi once it entersCi, setσ′0 = inf {t ≥ 0 : Xiε+(t) ∈ Ci , i ∈
I }. ThenP(σ′0 < +∞) = 1 since forh ∈ Ci,

P(Xiε+(t) = h,0 ≤ t ≤ T)

=

∞∑

n=0

P(Xε+(t) = h,0 ≤ t ≤ T, σn ≤ T < σn+1)

=

∞∑

n=0

(1− r i∗

c
)n · (cT)n

n!
e−cT = e−r i∗T ↘ 0.
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After entering⊗n
i=1 Ci, Xε+ behaves as an irreducible Markov chain on⊗n

i=1 Ci.

Denote byF N,Xε+

σ′0
σ-field generated byXε+ andN stopped byσ′0 , i.e.,F N,Xε+

σ′0
=

σ{Xε+(t ∧ σ′0),N(t ∧ σ′0)), t ≥ 0}. Then, by the strong Markov property ofN and

Xε+ and lemma 2,

P( lim
N→∞

1
N

∫ σN

0
1h(X

ε+(t))dt =
πε+h

c
|F N,X

σ′0
)

= P( lim
N→∞

N − N(σ′0)

N
1

N − N(σ′0)

∫ σN

σ′0

1h(X
ε+(t))dt =

πε+h

c
|F N,X

σ′0
)

= P( lim
N→∞

1
N − N(σ′0)

∫ σN

σ′0

1h(X
ε+(t))dt =

πε+h

c
|N(σ′0),X

ε+(σ′0), σ
′
0)

= 1

From this (A.19a) immediately follows.

Lemma 3. Under the assumption of proposition 4 the following statements

hold.

(i)If |C(u∗i)| > 1, i ∈ I , for anyε > 0 with

0 < ε < ε∗+ = min{ 1
(|C(u∗i)| + 1)∨ (mi + |C(u∗i)| − 3)

(1− r i∗

c
)∧min{Pi∗

hl, l , h} : i ∈ I },
(A.20)

there existsT > 0 such that for the Mckean processX c.t. ({Q(v); v ∈ Θ}),

PH,T( lim
N→∞

c
N

∫ σ′N

T
1K(X(s))ds>

∏
νiε+

ki )

≤ PH,T( lim
N→∞

c
N

∫ σ′N

T
1K(Xε+(s))ds>

∏
νiε+

ki ) = 0,H ∈ S.

(ii)For anyε > 0 with

0 < ε < ε∗− = min{ 1
mi ∨ 3

(1− r i∗

c
) ∧min{ Pi∗

hh

mi − 1
,h ∈ Si} : i ∈ I }, (A.21)

there existsT > 0 such that for the Mckean processX c.t. ({Q(v); v ∈ Θ}),

PH,T( lim
N→∞

c
N

∫ σ′N

T
1K(X(s))ds<

∏
νiε−

ki )

≤ PH,T( lim
N→∞

c
N

∫ σ′N

T
1K(Xε−(s))ds<

∏
νiε+

ki ) = 0,H ∈ S.
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HerePH,T stands for the conditional probability conditioned onX(T)(resp.Xε+(T),

Xε−(T)) = H ∈ S, andσ′n is then− th jump time ofN(t) afterT.

Proof of lemma 3. For the proof we costruct a Markov process (X̂, X̂ε+(X̂ε−))

onS × S such thatX̂
D' X, X̂ε+ D' Xε+(Xε−) and 1K(X̂(t)) ≤ 1K(X̂ε+(t)), (1K(X̂(t)) ≥

1K(resp. X̂ε−(t)), )t ≥ T,a.s.. We only prove (i) since (ii) is shown in the same

way.

By the assumption of proposition 4 and the continuity ofr i
h(u) in u, there exists

T > 0 for anyε with 0 < ε < ε∗ such that∣∣∣∣∣∣
r i

h(u(t))

ci
− r i∗

ci

∣∣∣∣∣∣ < ε, h ∈ Si , t ≥ T. (A.22a)
∣∣∣∣∣∣
r i

h(u(t))pi
l(u(t))

ci
− r i∗pi

l(u
∗)

ci

∣∣∣∣∣∣ < ε,h, l ∈ Si , t ≥ T. (A.22b)

Let (X̂i , X̂iε+), i ∈ I be a collection of a mutually independent Markov process

onSi×Si following tansition lawP̂i given by table (A.23) below whenNi(t) jumps

at timet, and set (̂X, X̂ε+) = (X̂1, X̂1ε+, . . . , X̂n, X̂nε+). The general rule to construct

P̂i is as follows.

First we give probabilityPi
hl(u(t)) ∧ Piε+

h′l to transition (h,h′) → (l, l). Next

we give probabilityPi
hl(u(t)) − Piε+

h′l to transition (h,h′) → (l,h′) or probability

Piε+
h′l − Pi

hl(u(t)) to transition (h,h′) → (h, l), depending onPi
hl(u(t)) > Piε+

h′l or

Piε+
h′l ≥ Pi

hl(u(t)). Finally all residual probabilities are given to (h,h′)→ (h,h′).

By use of (A.22) it is easily cheked that the transition probability in the fol-

lowing table is so well defined forε with (A.20) thatP(X̂i(σi
n) = l|X̂i(σi

n−) = h) =

Pi
hl(u(σi

n)) andP(X̂ε+(σi
n) = l|X̂ε+(σi

n−) = h) = Piε+
hl .

Because it holds that
∑

l′∈Si

P̂i
(h,l)(h′,l′)(u(σi

n)) = Pi
hh′u(σi

n), l ∈ Si ,

∑

h′∈Si

P̂i
(h,l)(h′,l′)(u(σi

n)) = Pi
ll ′u(σi

n),h ∈ Si .

f rom to with transition law
f or any h, (h, k) (k, k) Pi

hk(u(t))
(l, k) Pi

hl(u(t)) − Piε+
kl , l , k

(l, l) Piε+
kl , l , k

(A.23a)
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f or any h, k, (k,h) (k, k) Piε+
hk

(k,h) Pi
kk(u(t)) − Piε+

hk
(h,h) Pi

kh(u(t))
(l,h) Pi

kl(u(t)) − Piε+
hl , l , h, k

(l, l) Piε+
hl , l , h, k

(A.23b)

f or any h, k, (h,h) (k, k) Pi
hk(u(t))

(h, k) Piε+
hk − Pi

hk(u(t))
(h,h) 1− Piε+

hk −
∑

l,h,k Pi
hl(u(t))

(l,h) Pi
hl(u(t)) − Piε+

hl , l , h, k
(l, l) Piε+

hl , l , h, k

(A.23c)

f or any h, k, (h,h′) (k, k) Pi
hk(u(t))

h′ , k,h , h′ (h, k) Piε+
h′k − Pi

hk(u(t))
(h,h) Piε+

h′h
(h,h′) 1− Piε+

h′h − Piε+
h′k

−∑
l,h,k Pi

hl(u(t))
(h′,h′) Pi

hh′(u(t))
(l,h′) Pi

hl − Piε+
h′l , l , h,h′, k

(l, l) Piε+
h′l , l , h,h′, k

(A.23d)

By the construction of the transition law, obviously state (k,h) with h , k in

Si ×Si never occurs when (̂Xi , X̂iε+) begins atT on the conditionX̂i(T) = X̂iε+(T).

So it holds that

P( lim
N→∞

1
N

∫ σ
′
N

T
1K(X̂)(t)dt ≤ lim

N→∞
1
N

∫ σ
′
N

T
1K(X̂ε+)(t)dt|X̂(T) = X̂ε+(T) = H) = 1.

Then we have

PH,T( lim
N→∞

c
N

∫ σ
′
N

T
1K(X̂(t))dt >

∏
νε+ki )

≤ PH,T( lim
N→∞

c
N

∫ σ
′
N

T
1K(X̂ε+(t))dt >

∏
νε+ki ),H ∈ S,

which shows the conclusion sincePH,T( lim
N→∞

c
N

∫ σ
′
N

T
1K(X̂ε+(t))dt =

∏
νε+ki ) = 1

from (A.19a).　 �

40



Lemma 4. For u∗ ∈ Θ with |Ci(u∗)| > 1, i ∈ I , there exists a positive sequence

εn ↓ 0 such thatνiεn+, νiεn− → νi∗, i ∈ I , whereνiεn+(νiεn−, νi∗) is a unique stati-

nary distribution of a Markov chain of which transition probability isPiεn+ (resp.

Piεn−,Pi∗).

Moreover even foru∗ ∈ Θ with |C j(u∗)| = 1 for somej ∈ I , there still exists a

positive sequenceεn ↓ 0 such thatνiεn− → νi∗, i ∈ I .

Proof of lemma 4. There exists a uique stationary distributionπiεn+(πiεn−, πi∗)

of a Markov chain of which transition probability isPiεn+(resp. Piεn−,Pi∗). By

compactness of4i, there exist a positive sequenceεn ↓ 0 and aν′i ∈ 4i such that

νiεn+ → ν′i for all i ∈ I . Since it holds thatνiεn+Piεn+ = νiεn+, we haveν′iPi∗ = ν′i

by taking the limit. Hence we haveν′i = νiεn+ by the uniqueness of stationary

distribution ofPi∗.

By the same argument, we can choose a subsequenceε′n ↓ 0 such thatνεn− →
νi∗. Futher, forνiεn− andνi∗ this argument is still valid in the case of|C j(u∗)| = 1

for somej ∈ I . �

Proof of proposition 4. First we note thatu∗i is the unique stationary distribu-

tion c.t.Pi∗,i.e., πi∗ = u∗i in lemma 4 sinceu∗ is a stationary population state of

(2.4).

For the case of|Ci(u∗)| > 1, i ∈ I , let εn be a positive sequence in lemma 4.

Then by lemma 3, there exists aTn > 0 such that forK ∈ ⊗Ci(u∗)

PH,Tn(
∏

νiεn−
ki ≤ lim

N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤ lim
N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤
∏

νεn+

ki )

= 1,H ∈ S, (A.24)

whereσ
′
N is theN−th jump time ofN(t) afterTn.
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Therefore,

P(
∏

νεn−
ki ≤ lim

N→∞

c
N

∫ σN

0
1K(X(s))ds≤ lim

N→∞
c
N

∫ σN

0
1K(X(s))ds≤

∏
νεn+

ki )

= P(
∏

νεn−
ki ≤ lim

N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤ lim
N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤
∏

νεn+

ki )

= P(
∏

νεn−
ki ≤ lim

N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤ lim
N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤
∏

νεn+

ki

|X(Tn))

= 1. (A.25)

Sinceνiεn+, νiεn− → ui∗, from (A.25) we obtain

P( lim
N→∞

c
N

∫ σN

0
1K(X(s))ds=

∏
ui∗

ki ) = 1, (A.26)

which is equivarent to

P( lim
N→∞

1
σN

∫ σN

0
1K(X(s))ds=

∏
ui∗

ki ) = 1

by
σN

N
→ 1

c
,a.s..

For anyT > 0, there exists some positive integerNT(ω) such thatσNT (ω) ≤
T < σNT (ω)+1 for almost allω ∈ Ω. Hence we have

1
σNT+1

∫ σNT

0
1K(X(s))ds≤ 1

T

∫ T

0
1K(X(s))ds≤ 1

σNT

∫ σNT +1

0
1K(X(s))ds,a.s..

Then noting that
σN

N
→ 1

c
means

σNT+1

σNT

→ 1 asT → ∞, we conclude

P( lim
T→∞

1
T

∫ T

0
1K(X(s))ds=

∏
ui∗

ki ) = 1,K ∈ ⊗Ci(u∗), i ∈ I .

For the case where|C j(u∗)| = 1 for somej ∈ I , setJ = { j ∈ I : |C j(u∗)| = 1}.
Then we notice that in (A.25) the inequality in the lefthand still holds and the

inequality in the righthand can be replaced by one based on
∏

i∈I\J 1ki (Xi(s)). Thus

we have in place of (A.25)

P(
∏

νiεn−
ki ≤ lim

N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds≤ lim
N→∞

c
N

∫ σ
′
N

Tn

1K(X(s))ds

≤
∏

i<J

νiεn+

ki |X(Tn)) = 1, (A.25′)
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which leads to

P( lim
N→∞

c
N

∫ σN

0
1K(X(s))ds=

∏
ui∗

ki = 1) = 1, (A.26′)

by νiεn−
ki → uj∗

k j = 1, j ∈ J. From this we have the conculusion for the case. �
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