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Abstract

The theory of Generalized Confluent Hypergeometric Function and
Generalized Confluent Hypergeometric System defined on matrix space
was initiated by Gelfand and developed by H. Kimura et al., using tools
related to Young tableaux and twisted cycles. The aim of this paper is
to give a concrete expression of Generalized Confluent Hypergeometric
System on Grassmann Variety. Results will be applied to the study of the
relationship between Generalized Confluent Hypergeometric Systems and
Matrix Painlevé Systems in the forthcoming paper.

1 Introduction

Generalization of hypergeometric equations with regular singularities have been
studied by many authors. Especially, Aomoto [1], Gelfand [2, 3], Yoshida [16],
Matumoto et al. [13] considered integral expressions of hypergeometric functions
and dealt generalized hypergeometric systems with regular singularities defined
on matrix space. Gelfand et al. [4] generalized this method to define confluent
hypergeometric functions defined on matrix space. Inspired Gelfand’s work,
Kimura et al. [5, 7, 8,9, 10, 11, 12] defined the concept of Generalized Confluent
Hypergeometric Function and Generalized Confluent Hypergeometric System
defined on matrix space, using tools related to Young tableaux and twisted
cycles.

The aim of this paper is to give a concrete expression of Generalized Con-
fluent Hypergeometric System on Grassmann Variety. Results will be applied
to the study of Matrix Painlevé Systems in the forthcoming paper [15]. To ex-
plain our results, first we review various concepts in the theory of Generalized
Confluent Hypergeometric Function according to [5, 10].

Let A be a symbol which expresses a Young tableau of weight n. If the
number of rows of A is [ and numbers of boxes of each row are Ao, A1, -+, \j_1,
we write as A = (Ao, A1, -+, Ni—1). For example, Figure 1 expresses Young
tableau A = (5,3,1). We denote the weight A\g + Ay + -+ + A1 by ||

[ ]
|

A=(5,3,1), |A|=9
Figure 1.



Definition 1. For A = (Ao, A1, -+, Ni—1), we define an abelian group Hy as
follows:
Hy=1J),® - ®Jy_, CGL(n,C),

=13 > A [ rP ecn? £03,

0<i< Ay

where A is a shift matrix of size \:

01 0 0
0 0 1 0
A= 0
000 ... 1
00 0 ... 0

We call Hy, the Jordan group associated with Young tableau A. We call PH) =
Hy/Z the projective Jordan group associated with Young tableau )\, where Z is
the center of GL(n,C).

For example, H, 1 1) is the group of all matrices of the form:

a b 00
8 8 (c) 8 (acd #0).
0 0 0 d
We often use the expression
ho= (... pl=Y)
= (0 B g )

to express an element h € Hjy.

Definition 2. We introduce a biholomorphic mapping ¢ by

HAHH C* x CMhy

0 0 -1 -1
b= (", i) by e ST
0 0 -1 -1
'—)L(h):(hg))v"'ahg\g)_p"'vh(() ),"',hgl7111)>

and we denote the induced biholomorphic mapping between ITI,\ and Hic_:lo(é* X
C*e—1) by the same symbol v, where Hy and Hi;lo(C* x CNe—1Y are the universal
coverings of Hy and HZ;IO(C* x CM~1). We also use the same symbol v to
denote the biholomorphic mapping

L J/\k — C” x C)\k_l’ [hék) hg\? 1] (h(()k)7 ) hf\lz)fl)

and the induced biholomorphic mapping between j)\k and C* x Ce—1,



Let x» be a character of I~{>\, then y, is expressed as
alh) = X,\((h(o)7 .. .,h(lfl))) = XAO(h(O)) . ~'XAZ,1(h(lfl)),

where x, is a character of jAk. In order to express x, explicitly, we introduce
functions 60; as follows:

Definition 3. For the variable v = (vg,v1,v2,---) (vg # 0), we define 0;(v) (i =
0,1,2,---) by the generating function

log(vg + v1T + vT? + - 4

log vy + log(1 + %T + 272 )
0

Vo
> 0T
=0

By this definition, we obtain

0o = logug
0, = 2
Vo
g, — v2_L(uY’
2 Vo 2 Vo
(OR} V1V2 1 V1 3
Gy = = — =
3 Vo (’()0)2 + 3 (1}0>
We note that 0;(v) is a rational function of vg,v1, - -, v; and 0;(kv) = 6;(v) (i =

1,2,--+) for any k € C*.

Proposition A . Under the above definitions, x», is expressed as

e (B®) = (B8, B

exp | Y (M)

0<i<Ap

() exp (D0 a0 W) |,
1<i<Ay
where a®) = (a(()k),---,ag\?fl)(e C*) are constants. Conversely, a function

X, defined as the above way with some constants a®) becomes a character of
I -

Therefore, the character ) is expressed by powers of hék) (k=0,---,1—1)
and exponential functions with a tuple of constants o = (a(o), Sy a(l_l)). We
also use the notation xy(h, @) to express the constants « explicitly.



Definition 4. Let A = (Ao, -+, Ni—1) be a Young tableau of weight n. A tableau
= (tho, "+, i—1) of weight r(< n) is called a subtableaw of A, if and only if u
satisfies the condition:

0<pup <X (k=0,---,1-1).
In this definition, we don’t suppose p is a Young tableau. For example, if

A = (2,1,1), then subtableau p of weight 2 can be (2,0,0),(1,1,0),(1,0,1),
(0,1,1).

Suppose r and n are integers s.t. 0 < r < n and let M(r,n) be the set of
all r X n matrices with complex components. Further we set My(r,n) = {Z €
M(r,n) | rankZ = r}. M(r,r) means the set of r Xr matrices with complex com-
ponents. Using a Young tableau A = (g, -+, \j—1), we express a matrix Z(€&
M(r,n)) as Z = [Z°--- Z'Y], where ZF = [Z} - -- Z’;kfl] is a r X A\x matrix and
ZF (i=0,---,\x — 1) are column vectors. For a subtableau p = (uq, -+, 1)
of weight r included in A, we set Z, = [Z0---Z] |- Vi Zi;_llfl](e
M(r,r)).

Definition 5. For A = (X, -+, Ni—1) (J]A] =n) and an integer r (0 < r < n),
let
Zy ={Z € My(r,n)| For any subtableau p of weight r included in \,
det Z,, # 0} C My(r,n).

We call Zy the generic stratum of Mo(r,n) with respect to A. And let
Eyx={(5,2)€eP" ' x Zy|sZ§ #0 (k=0,--,1-1)} CP"'x 2,

where s = (sg, -+, Sr—1) 18 a homogeneous coordinate in Pl We denote the
natural projection by ¢1 : Ex — Zx,(s,Z) — Z.

A fiber E\(Z) = ¢7'(Z) is a set obtained from P"~! by subtracting [ dif-
ferent hyperplanes.

Definition 6. Let A = (Ao, -, \—1) (|A\| = n) be a Young tableau and let

a=(a® ... o= (€ C") be constants which satisfy the condition a'®) =
(oz(()k), sy a&?ﬁl) € C* and oz(()o) 44 a(()lfl) = —r. For )\, a, we consider a
system

LimF=aMF, (0<k<l—1,0<m< )\, —1)

G)\,oc : MZ]F = —(5ijF, (0 <i,i<r— ]_)
Oijpgt" =0 (0<i,j<r—1,0<pg<n—1)
defined on Zy, where

r—1 Agy1—1

0
Lim =) > ap-my—
q=0 p=Ar+m ap
(AOZO,Ak:AO—F‘F)\k—l (k: lavl))
n—1
0
Mij = Z Zip AT

O

iing = —_
Ipa 6zip8,zjq 8Ziq aij

0;5 15 Kronecker’s 0.



We call this system the Generalized Confluent Hypergeometric System (GCHS)
on Zy.

Let O(Zy) = { analytic functions defined on Z,}. We consider two properties
for functions in O(Z)):

(A) F(Z)(e O(Zy)) satisties F(KZ) = h(K)F(Z) for any K € GL(r)
where h(K) = (detK)~*.
(B) F(Z)(e O(Z)y)) satisfies F(ZL) = F(Z)xA(L,a) for any L € PH,.

Definition 7. We define three subsets in O(Zy) as follows:

Sa={F € O(Z)) | F has the property (A)}
Sap={F € O(Zy) | F has the properties (A) and (B)}
S={F €0(Zy) | F is a solution of GCHS G4}

We note that Sa g C Sa C O(Z)). Kimura et al. [5] showed the following
facts:
Proposition B . It holds that S C S4 B.
Proposition C . G , is holonomic.

The set My(r,n) is naturally acted by GL(r) from left-hand, and acted
by Hy from right-hand. GL(r)\My(r,n) is the Grassmann variety Gr(r,n).
And Uy = GL(r)\Z, is an open set of Gr(r,n). Since Zy is Hy - invariant,
Dy = Ux/Hyx = GL(r)\Zx/Hyx (C Gr(r,n)/H,) is an open manifold of the
variety Gr(r,n)/Hy. Further we note that Dy = Ux/PH) C G,(r,n)/PHj.
From these facts and the property

F(KZL) = h(K)F(Z)xA(L,a) K € GL(r), L € PH,

for a solution F'(Z) of G «, we find that any solution F'(Z) of G, , is expressible
by a certain analytic function defined on D). Relations of sets Ey, Zy, Uy and
D, are as follows:

E\ C Pl x I
b1

Zx C My(r,n)
¢2

Uy = GL(r)\Zx C Gr(r,n)

™

Dy = Uy/PH, C Gr(r,n)/PH,

Here ¢, ¢2, m are natural projections.



We can construct a solution of G, by integrating a certain differential
form on Ey. Let a = (a9, al=D) (€ C™) be constants which satisfy the

condition a(F) = (a(()k),--~,af\i)71) € CM* and o) + -+ al ™V = —r. We
define a (r — 1)-form w(s, Z, o) on E) as follows:

Definition 8.

w(s, Z,a) = xa(t™'(s2),a)0
-1
= H(sZ{f)aék) exp Z agk)ﬁi(sZék),---,sZiill) o
k=0 1<i<Ag
where

(S,Z) € Ey\ C P! x Z
o= Z (—1)k8kd80 Ao ANdSg—1 ANdsge1 N+ AdSp_q.
0<k<r—1

From the property of §; and the assumption for «, we find that w(ks, Z, o) =
w(s, Z,a) (k € C*). So w(s, Z,a) is an analytic (r — 1)-form on E).

Definition 9. Using a twisted cycle A(Z) on Ex, we define the Generalized
Confluent Hypergeometric Function (GCHF) of type A as

F(Z,a) :/A(Z)w(s,Z,a).

F(Z,a) is an analytic function defined on Zy (C My(r,n)).
Proposition D . F(Z, ) is a solution of G 4.

In section 2, we show the concrete expressions of GCHS on Uy C Gr(r,n).
First we give preparatory propositions. Using these results, we show the ex-
pression of GCHS on Uy (Theorem 1). Further we obtain another expression of
GCHS on some manifold (Thoerem 2). Relating to Theorem 2, we give a conjec-
ture on the expression of GCHS on D). Proofs of propositions and theorems are
given in section 3. Results for the case |\| = 4 are studied and essentially applied
to the study of Matrix Painlevé Systems in the forthcoming paper [15]. Matrix
Painlevé Systems are defined on D) and they are derived from a Anti-self-Dual
Yang-Mills equation defined on Uy (See [14]).

2 Main results

In order to treat the expression of GCHS on Uy C Gr(r,n), we first consider
various manifolds related to GCHF and GCHS.
Let F, be a flag manifold:

Fy,.={(,Sy)| !isa l-dim linear subspace in C",
Sy is a r-dim linear subspace in C" s.t. [ C S, }.

Then we have a double fibration:



/\

Gr(r,n)
Here we set

U ={Z € Gr(r,n)| Equivalent class Z has a representative [I W1,
WeM(@rn—r)}~ Crx(n—r)

Fy=¢""(U) C Fr,,

V=29-¢7(U) =y(Fv).

and set
Z=Az=12°--2""'7"-.. 2" € My(r,n) | det[Z°---Z"71] £ 0},
where Z* are column vectors of Z. Then we obtain the following Lemmas:
Lemma 1. It holds that
(1) Fy is biholomorphic to P™~! x U.
(2) V=P ! — H where H={(0,---,0%,--,%)}.
—_——

Lemma 2. P! x Z > P! x Z, D E,.

Further we note that U = GL(r)\Z > GL(r)\Zx = Ux. So we have the
following diagram:

P 1x Z>Pr!xZ, DE,

Y

Fi . DFy~P 1xUD>P~1x Zy C My(r,n)

SN

U>D U)\—GL \Z)\

™

Dy = Ux/PH,

The integrand w(s, Z, o) of GCHF F(Z,«) is defined on the manifold Ej,
and GCHF F(Z,«) itself is a function on the manifold Zy. GCHS Gy, is a
system defined on Z,. The theory of GCHF and GCHS has been developed on
the manifold on E\ and on Z) to keep the symmetry in variables, but if we want
to apply this theory to other systems, we need to consider GCHF and GCHS
defined on the manifold Uy and on the manifold D).



In order to state main theorems, we introduce expressions of variables in
Zx, Uy and D). We express variables as:

Zx3Z=[VV]|=UIW]
Us>W ~[I W] =A[l T|B

Dy>t~ [I T],
where

_Zoo Tt 20 r—1 20 r 20 n—1
V=|: : €GL(r), V =

L Zr—=10 " Zr—1r—1 Zr—1r "' Zr—1n—1

—Uoo o UQ -1 Wo 0 0 Wo p—r—1
U=|: : € GL(r), W=

L Ur—-10 o Up—1 -1 Wr—10 0 Wr—1 n—r—1

B B
_ p-1 _ 00 01
A= By, € GL(r), B = [ 0 Biy ] € PH,

and 7 X (n—r) matrix T includes N = {n— (r+1)}(r — 1) independent variables
t = (to, - +,tn—1). Then we obtain following five propositions:

Proposition 1. (1) Natural projection ¢2 has following properties:

(i) ¢o: Zy — Ux, Z — W (=~ [I W]) and ¢3 is onto holomorphic.
(ii) For any W € Uy, if we denote ¢5 (W) by Zw, Sw = GL(r)[I W].

(2) Natural projection w has following properties:

(i) m: Uy — Dy, W (= [I W]) — t(~ [I T]) and 7 is onto holomorphic.
(ii) For any t € Dy, if we denote m=1(t) by Sy, St = [I T]PH,.

(3) Mapping wo ¢ : Zy — Dx, Z —— t(=~ [I T]) has following properties:
(i) 7o ¢g is onto holomorphic.

(i) For anyt € Dy, (mo¢2)~(t) = ) Sw = GL(r)[I T|PH,.
WeSy

Proposition 2. (1) There exists biholomorphic mapping
i Zy — GL(r) x Ux, Z = U[I W]+ (U,W)
s.t. m(Zw) = GL(r) x {W}.
(2) There exists biholomorphic mapping

Cx: 2y =5 GL(r) x Dy x PHy, Z = U[I W] = UA[I T|B— (UA,t,B)

st O( | Zw) = GL(r) x {t} x PH,.
WeSy



Proposition 3. Let S4, 54,5 be sets defined in Definition 7, and let

O(Uy) = {analytic functions defined on Uy}
O(Dy) = {analytic functions defined on Dy}.

And suppose that h expresses the function h(K) = (detK)™! (K € GL(r)) and
X expresses the function xx(L,«) (L € PH)).

(1) We can regard S4 = h-O(Uy) by means of F'(Z) = F(U[I W]) = h(U)F(W),
where F(W) = F([I W)).

(2) We can regard Sa,g = h-O(Dy) - x» by means of F(Z) = F(UA[I T|B) =
R(UA)f () (B.a), where f(£) = F([I T]).

Proposition 4. Suppose [(Z) € Sa and F(Z) is written as F(Z) = F(U[I W]) =
hU)F (W), where F(W) € O(Uy). Then the condition

MyF =—0;F (0<i,j<r—1)
is equivalent to an identity of h(U):
h(U)6; pdetU = §; .
Therefore, if F(Z) € Sa, F(Z) always satisfies the condition
MyF =—6,F (0<ij<r—1).

Proposition 5. Suppose F(Z) € Ss g and F(Z) is written as F(Z) = F(U[I W]) =
F(UA[I T|B) = h(U)h(A) f(t)x»(B). Then the condition

LimF=aPF (0<k<i—1,0<m< )\, —1)
Mi]‘F = —(SijF (0 S Z,] S T — 1)
are equivalent to identities of xx(B) and h(U) :
Ap—1

memagkk ) a®a(B) (0<k<i-1,0<m<A—1)

hU )5Z pdetU = 0; .
Therefore, if F(Z) € Sa g, F(Z) always satisfies the condition
{ LimF=aPF (0<k<i—-1,0<m<A—1)
MyF =—6;F (0<ij<r—1).
Remark 1. In the proof of Proposition 5, we will show

Ap—1
Ox\(B
Z xk’i,mw :afjj)x)\(B) 0<k<Ii-1,0<m< -1

i=m ’

are identical.



From the above propositions, we can obtain expressions of GCHS on Uy and
on Dy. Let A = (Ao, -+, \;_1) be a Young tableau and let o = (!9, - o!=1) (€

C") be constants which satisfy the condition a® = (a{), .. 7045\’?71) € CH

and a(()o)—i— —|—a(()l V= _p (0 <7 <n). For \,a and F(W)(€ O(Uy)), let us
consider the system deﬁned on Uy:

(1) LpmE =oPF (it r < Ay)
(2) Ik;mF = agf)ﬁ (lf Ap <r < Ap+ m)
Onay (3) JemF = {0molr — Ar) + ANVE (f A +m<r <A —1)
(4) KpmF = —{0mos + odn) }F (if Agypr <7)
(5) DijpgF =0 (0<4,j<r—1,0<pg<n—r-—1)

where

r—1 App1—1-7

. 0
Ly = Z Z wq,p—maT

q=0 p=Ap+m—r P
r4+m—1 Ap1—1r—1

Z % + Z qu,pfmfri_ (lf r+m< Ak+1)

Wy — _
p=Ar+m p=m,p—r p=r+m g=0

Ikm = Api1—1
0 .
> oL (7 +m > Agya)
Wy — _
p=Ar+m p=m.p=r
n—r—1 r+m—1
DS o + Z
p.q
p= Ak+m q= 0 a p m,q 8wp m,p—rT
App1—1r—1
0 .
T — + Z qu,p morgo (if r+m < Agy1)
km = prtm 7=0 Wq,p—r
Ak+1 1

n—r—1
Y o Gy e T 2 awpm,,r

p=Ar+m q=0

(lf r+m Z Ak+1)
App1—1 pn—r—1 9

iing = —
Ipa awip(“)qu 8wiq8wjp

Omo 18 Kronecker’s 6.

Definition 10. We express the solution space of Cy o as
S={F(W)eO(U)|FW) is a solution of Cx.}

Theorem 1. Let F(Z) € S. Then F(Z) is written as F(Z) = F(U[I W]) =
WU)E(W) € h-O(Uy) and F(W) € S. Conversely, let F(W) € S. Then the
function F(Z) (€ O(Zy)) defined by F(Z) = F(U[I W]) = h(U)E(W) satisfies
F(Z) e S. In this sense, the system Gy o and the system C) . are equivalent.

10



Remark 2. The corresponding condition to M;;F = —6;;F (0 < i,j <r —1)
vanishes in C o, and (1),(2),(8) and (4) in Co are derived from Ly, F =
B (0<k<l-1,0<m< Ay —1).(5) is derived from Oy F =0 (0 <
,j<r—1,0<p,¢g<n-—1).

From Theorem 1, we can say that C) o is the GCHS on Ul.
Further we consider a system defined on GL(r) x Dy x PHy. For A\, a and
f(t)(€ O(Dy)), let us consider a system

]?]A’a : (CA)*(Diqu)h(UA>f(t)X>\(Bva) =0

Theorem 2. Let F(Z) € S. Then F(Z) is written as F(Z) = F(UA[I T|B) =

hMUA)f(t)xr(B, ) € h-O(Ux)-xa and h(UA) f(t)xx(B, a) satisfies Hy o. Con-
versely, suppose h(UA)f(t)xa(B, «) satisfies PNI)\’Q. Then the function F(Z) (€
O(Zy)) defined by F(Z) = F(UA[I T|B) = h(UA)f(t)xA(B, ) satisfies that

F(Z) e S. In this sense, the system Gy o and the system H) . are equivalent.

Remark 3. Corresponding conditions to

LimF=aPF (0<k<i—1,0<m<)\,—1)
MijF:—(SijF (OSZ,]ST—l)

vanish in ﬁ,\@. ﬁ,\ﬂ is derived only from O, F =0 (0<4,j<r—1,0<
pg<n—1).

Conjecture. Hk,a is equivalent to a system only for f(t). If we denote this
system as Hy o, G 15 equivalent to Hy o. We may call Hy , the GCHS on
D,.

In the next section we give proofs of the above results.

3 Proofs of results

3.1 Proofs of Lemma 1 and Lemma 2

Proof of Lemma 1. (1) Let s = (sg,--+,8,_1) € P"™1, Z = [I W] € U, and
consider a mapping

TP U — Fy,(s,2) — (<SZ >,< Zy,-, Zp_1 >)

where Z = [I W| = [Zy--- Z,_1]", < Zo,-++,Zr—1 > is a r-dim linear subspace
spanned by Zy, -+, Z,_1(€ C") and < sZ > is a 1-dim linear subspace spanned
by sZ(e C").

(7 is well defined)

11



< Zo,-++, Zr—1 > is a r-dim linear subspace in C™. As Z = [I W] is rank r,
sZ #0. So < sZ > is a 1-dim subspace in C™. From sZ = (sg, "+, 8+—1)[Z0 "
Zr_|t =802+ +8r—1Zp—1, < sZ >isincluded in < Zy, -+, Z,_1 >. lfu~
s, then u = ks (k # 0), and uZ = ksZ. Then < uZ >=< sZ >. Therefore
(< 8Z >, < Zy,-+,Zyr_1 >) € Fi1p. And ¢(< 8Z >,< Zy, -+, Zr_1 >) =<
Zy-+Zp_y >€ U. Then (< sZ >,< Zy, -, Zr—1 >) € Fy.

(7 is bijective)

Suppose (I, S;) € Fy, ¢(1,S,) = S, € U. Then there uniquely exists [I W] =
(Zo -+ Zyp_1]t, st. S, =< Zy, -+, Z,_1 >, and there uniquely exists s € P"~1,
st. |l =<8[Zy- - Z._1]' >. Therefore there uniquely exists (s, [ W]) € P! x
U, st. 7(s,[I W]) = (L, S,).

(7 is biholomorphic)
By the definition of 7, this property is apparent.
(2) From (1), we have
Fy={(<sZ> <2y, Zp1>)s€P Y Z=[Zy- Z, 1]t = [I W]}

W(Fy)={<sZ>|Z=[1W]}cpPr!
SZZS[I W] = (807"'75r—1, SW)

If Sk 75 0,
(807"'787‘717 SW) ~ <807'“717"'78T175W> .
Sk Sk Sk
Then )
V=y(Fy) =] P,
k=0
where
Vk} - {(*7 a*715*7 a*)}
k
Therefore

O

Proof of Lemma 2. When A = (Ao, A1, -+, N—1),Z € Zy, Z is divided into [
blocks as

Mo M A N1
Z=[" " )

where at A\j block there are v columns in the left side of || line, and Ao + A1 +
e A1 U =T

Let p = (Mo, A1, -+, Ak—1,v) (Ju| =), then p is one of subtableau of A. For
Z, =[2°---Z""1, we have detZ,, # 0. Therefore Z € Z, then Z) C Z. From
this we obtain P"~1 x Z > P"~! x Zy D E,. O

12



3.2 Proofs of Proposition 1, 2 and 3

Proof of Proposition 1. (1) (i) For any Z = [V V'] € Z,, there exsits W(e
GL(r)) s.t. ULV V'] = [I W]. [I W]is uniquely determined by Z, and [I W] is
the representative of the element ¢2(Z) in Gr(r,n). Then ¢2(Z) = W(~ [I W]).
AsU =V and W = V~'V’, ¢, is holomorphic.

(ii) If Z € GL(r)[I W], Z is written as Z = U[I W] (U € GL(r)). By the
property (i) of ¢2, Z € ¢y '(W). Then GL(r)[I W] C ¢ (W). Conversely, if
Z € ¢y 1 (W), there exists U € GL(r) s.t. Z = U[I W]. Then Z € GL(r)[I W]
and ¢, "(W) € GL(r)[I W]. Therefore it holds that ¢, (W) = GL(r)[I W].

(2) (i) As Z, is open in My(r,n) and ¢ is open mapping, Uy is open in
Gr(r,n) and dimUy = r(n —r). Uy is PHy-invariant and dimPHy = n — 1.
So dimDy =r(n—r)—(n—1)={n— (r+1)}(r — 1). Then for any [I W](e
Uy), there exist A € GL(r),B € PHy s.t. A7 [I W]B~! = [I T}, T includes
N = {n — (r +1)}(r — 1) independent variables t = (to,---,tn). Therefore
7(W) =t(x~ [I T)). From T = A~'WB~!, 7 is holomorphic.

(i) If [I W] € [I T|PH,, [I W] is written as [I W] = A[I T|B

| Boo Bo1
<Ae GL(r), B= [ 0 By ] ePHA>

where Byg € GL(r) and A is needed for the adjustment of AByy = I. From this,
[I T)PH) C 7=1(t). Conversely, if [I W] € m~1(t), there exist A € GL(r), B €
PH) s.t. [I W] = A[I T|B. As A[I T|B € [I T|PH,, =—(t) C [I T|PH,.
Therefore, we have 7= (t) = [I T|PH,.

(3) (i) From (1)(i) and (2)(i), it is apparent.

(i) (ro62) 1 (8) = 6 (- (£)) = 63 (S0) = Upes, 63 (W) = Upes, -
On the other hand, ¢, (7~ (t)) = ¢, '([I T|PH)) = GL(r)[I T|PH,.

O

Proof of Proposition 2. (1) Let define mappings:

mx:Zx — GL(r) x Ux, Z =U[I W] +— (UW)
vy :GL(r)x Uy — Z\,(UW)+— Z =U[I W]

7 and vy are well defined and holomorphic. Apparently vy is inverse of 7y, so
7 is biholomorphic mapping.

From Proposition 1 (1)(ii), na(2x) = ma(GL(r)[I W]) = GL(r) x W.

(2) Let define mappings:

x: Zy — GL(r) x Dy x PHy, Z = U[I W] = UA[I T|B — (UA,t, B)
€x: GL(r) x Dy x PHy — Zy, (C,t,B) — Z = C[I T|B

(x and &, are well defined and holomorphic. Apparently &, is inverse of (j,
so (x is biholomorphic mapping. From Proposition 1(3)(ii), (x(Uwes, Zw) =
((GL(r)[I TIPHy) = GL(r) x {t} x PH,.

O
Proof of Proposition 3. (1) If F(Z) € Sa4,

F(Z)=FU[I W]) = h(U)F(I W]) = h(U)E(W) € h-O(U,).

13



Then S4 C h-O(Uy). Conversely, if hWU)E(W) € h-O(Uy), we can define an
analytic function F'(Z) as

F(Z)=FU[I W]) = h(U)F(W).

Since any Z(€ Zy) can be written as Z = U[I W], F(Z) is well defined. For
any K € GL(r),

F(KZ) = F(KU[I W) = h(KU)E(W) = W(E)W(U)E(W) = h(K)F(Z).

Then F(Z) € Sa, and h- O(Uy) C S4. From these, we obtain Sy = h-O(Uy).
(2) If F(Z) € Sa.B,

F(2) =FWU[IW]) = FUA[I T|B) = h(UA)F([I T)xA(B, @)
=h(UA)f(t)xxr(B,a) € h-O(Dy) - xx-
Then Sa.g C h-O(Dy) - xa. Conversely, if A(V)f(t)xr(B,a) € h- O(Dy) - X,
we can define an analytic function F(Z) on Zy as

F(Z) = h(V)f(t)xa(B,a),

because that ¢y : Zx — GL(r) x Dy x PH, is biholomorphic. By similar
calculations in (1), we can check that F(Z) € Sa.p. So h-O(Dy) - x» C Sa.B.
Therefore we have proved that Sy g = h-O(Dy) - xa. O

3.3 Proofs of Proposition 4 and 5

To give a proof of Proposition 4, we first prepare a Lemma.

Lemma 3. Suppose U = [u;;] € GL(r), h(U) = (detU)~! and A;; be the
cofactor of u;; in U. Then we get

1) o
oh
(2) 811/” =—h A'LJ

This is a Lemma given in Horikawa [6]. So we omit the proof.

Proof of Proposition 4. By Proposition 2(1), we have the following fibrations:

~

Z — GL(r) x Uy
L3N
U, W

14



Suppose Z € Z, and that s belongs to an open neighborhood of 0 € C. For
any A € M(r,r), exp(sA) is an element in GL(r). So we obtain F(exp(sA)Z) =
exp(—sTrA)F(Z). It Z € By, then exp(sA)Z is a curve in Xy, Let us consider
the differential L F(exp(sA)Z) |s—o. Here we obtain

d
%F(exp(sA)Z) o

Then, if A = [a;;] and Z = [z;], (1) means

Z o Zaipzm- - eiamw)

=0

§ :a”LPE Zpa E aip(—bip)

Since A is any matrix, this relation is equivalent to

= %exp(—sTrA)F(Z) (1)

s=0 ’

n—1

OF
Zzpjng&pF 0<i,p<r-—1).
j=0 *
Changing indices,
n—1
oF
Zzipa7:_6jiF (OSZ"J' §r—1)
p=0 Jp
MijF = —(SijF (0 é ’L,] S r— ].) (2)

Therefore, the condition (2) is equivalent to (1).
Here we set as

F(Z)=FU[I W]) = h(U)FE(W) = F(U,W).
Then we have
F(exp(sA)Z) = F(exp(sA)U[I W) = F(exp(sA)U,W).

We note that (exp(sA)U, W) is a curve in the fiber GL(r) x {W} in GL(r) x Ul.
If we use F' | (1) is rewritten as

— F(exp(sA)U, W) = %exp( sTrA)F(U,W)

3)

s=0 '

s=0

Then

r—1
Z 8uw (U, W) Zawum = (- Zaii)F(U W)
Z Qip Z Upy Z aip(—dip)

Since A is any matrlx, thls relatlon is equ1valent to

Z“’”au =0, F  (0<i,p<r—1). (4)
ij

15



This is a equation for F. As F(U, W) = h(U)F(W), (4) is

POV S s G = POV )(=8h(U) )

If (W) =0, then this equation is an identity. So it is equivalent to any identity
of h(U). When F(W) # 0, (5) is equivalent to

r—1
oh(U .
Zum% — _5,h(U)  (0<ip<r—1). (6)
=0 i
By Lemma 3 (2), (6) is equivalent to

r—1
D upi(=h*Aig) = =biph
=0

r—1
h Z uijij =h (Sip detU = (Sip. (7)
7=0

The last equation is an identity. So the condition (5) is equivalent to the identity
(7). From these, the condition (2) is equivalent to the identity (7). O

Remark 4. Horikawa [6] proved Proposition 4 for the case F(Z) € S with
A=(1,1,---,1) by direct calculation. We can also prove Proposition 4 of general

case by direct calculation. Actually, equation M;;F = —06;;F is rewritten into
(6) by the change of variables Z = U[I W].

To prove Proposition 5, next we prepare a Lemma on functions 6;.

Lemma 4. Suppose A\ is an component of X = (Ao, -+, \i—1), and x = (o, 1,
o+, &x,—1) (o # 0) are variables. For 0;(xo,x1,---,x;) and any integer m (0 <
m < A\, — 1), it holds that
0
—O0,=1
o 0xm
0 0 0
(20 +x + ot )i =0 (1<i<A—m-—1).

1
8$m 8xm+1 8xm+i

Proof. We define a function ®(s) as

®(s) =loglzo+ 1T+ + 2 1 T™ ' + (2, + 520)T™
+(£Cm+1 + Sl‘l)Tm+1 + -+ (I’)\k_l + SI)\k_l_m)T)\kil]
=loglxg+ 1T+ -+ x,\k_lT)"“_l
+s(zoT™ + 2 T+ T )]
= 90(%‘0) + 91($O,$1)T —+ -4 9m(:v0, e Tm—1,Tm T+ Sl‘Q)Tm

1
i1 (20, Ton + 8T0, Ty + s21)T™F
i
FO0rmyi(To, s T + 8T, -+, Typppi + 523) T
Ap—1
+9Ak—1(x07 T + STo, " ,.'L'}\k_l + S.Z',\k_l_m)T k

)
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where s is a complex parameter defined in an open neighborhood of 0 € C.

Then we have

d® 00, "
Al s=0 <8mmxo> r
0

ds
+ [ xo J + 0 Tt
aan ! a33m—i—1 m

0 0 0 ;
+ (I’O ax + 1 + e + $Z> 0m+sz+Z

al‘erl Lim+i
0 0 0
iem Oy, 1 TM1
+ (ZCO Er + 21 D + + 2y, 1 axAk_1> Ap—1

Txp—1—m )\, —1—
TR T T
o R I e )

Zxo xo

Here we set S = 217+ - - D=t pAk=1 Then
0 xo
(%) _Tmﬂ—S+SQ—§H~~]P+S—<ztwﬁﬂkm+~~+
0
—Tm _ <1'Aka)\k 4ot Tag,—1 T)\k+m—l> (1 + O(T))

i) o
=T™ — O(T™).

Therefore, we obtain

0

LT —1

Zo

)

JfoaTom =1
x 0 +x 9 +ootri=—— 0 =0 1<i<A—m-—-1)
09z, 18xm+1 " OT oy e =t =7k ’

Proof of Proposition 5. As in the proof of Proposition 4,
MijF = *5ijF (O S Z,] S T — 1)

is equivalent to the condition

d d
£F(exp(sC’)Z) e Ee:vp(—sTrC’)F(Z) e

O

where C € M(r,r) and s belongs to an open neighborhood of 0 € C. Since
F(Z) = F(UA[I T|B) = h(U)h(A) f(t)x»(B,a) and A depends on B, we can

set F(Z) = F(U,t, B). Then the above equation is written as

j F(exp(sC)U,t, B)

This is equivalent to

= diexp( sTrC)F(U,t, B)

s=0 S s=0

Zumau =6 F (0<i,p<r-—1)
ij
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and we can obtain the equivalent condition
h(U)(SlpdetU = (Sip

by similar calculations in the proof of Proposition 4.
Next, by Proposition 2 (2), we have the following fibration:

~

Z)\ — GL(T) X D>\ X PH)\
6
PH,
[ ] [ ] ‘
/ GL(r) (UA ¢ B)
Uwes, Zw GL(r) x {t} x PH,
Dyt

Suppose Z belongs to J,,cs, Sw = GL(r)[I T|PH,. We note that Z is writ-
tenas Z =U[I W] =UA[I T|B, where UA € GL(r),B=By@ B1 P --- P B
PP Bi—1 € PH). Here we set

hien =Io L P - PHpm@P---PILi—1 € PHy
Hk7m:Ik+5Am
O0<k<i—1,0<m< N —1)

where I; (0 < j <[—1) is a unit matrix of size A;, A is the shift matrix of size
A and s is a complex parameter defined in an open neighborhood of 0 € C.
Then Zhy ,, parametrized by s is a curve in UWGSt Yw. Let us consider the

differential %F(th,m) |s=0. From the property of F', we obtain

d d
£F(th7m) s:O— gF(Z>X)\(hk;)m,a) =0 . (8)
Since
Zhigm = [ZO'"Zk"'Zf_l](fo@h@'"@Hhm@“-@lzq)
— [ZO . Zk—l Zk(s) Zk+1 . Zl_l],

where
ZO,Ak e ZO,Aker*l ZO,Aker e zO,Akﬁk)\k*l
ZF = ,
Zr—1,Ar, " Rr—1,Ap4+m—1 ZRr—1,Ap+m ' Rr—1,Ap+i—1
20, Ay Tt 20,Ap+m—1 8$20,A;, T 20,An+m
Zk(s) _ . . .
Zr—1,A, " Zr—1,Ap+m—1 SZr—1,A, T Zr—1,Ap+m

18



820, Ap+Ap—1—1-m T 20,Ap+Ap—1
: (Ag =X+ A+ A1),
SZT‘—l,Ak-‘r)\k,l—l—m + ZT‘—l,Ak—‘rAk—l

then we have

d r—1 A+ —1 8F
T FZhim) | => > 2ap-mzy—(Z) = LimF.
5= q=0p=Ar+m P

On the other hand, if 0 <m < A\ — 1,

(B @) = X (Ings @) - xa,_, (Tn,_» B~ D)
XAk (Hk,mv a(k))X)\k+l (I)\k+1 , a(k+1)) e
= X (Hk,maa(k))

= exp Z agk)ei(170,--~70,s70,---)
0<i< Ak

2
—cop (affs + o= )+ ).
if m =0,

Xx(him, ) =exp Z agk)ﬁi(l—ks,O,---)
0<i<A
a®

=(14s)% " .

So we obtain p
da )
T F(Z)xa(hkms ) L = allF(2).

Therefore (8) is equivalent to the equation

LimF =aPF. (9)

Here from F(Z) we define a function F defined on GL(r) x Dy x PHy by
F(Z) = FUA[I T|B) = MUA)f(t)xa(B,a) = F(U,t,B). We note that A
depends on B. And we rewrite the relation (8) into the relation for F(U,t, B).
From

d d -~
—F(Z = —F(U,t, Bhy
dS ( h‘k,m) =0 dS (U? bl k, L) _
d F(Z)Xk(hk,mvo‘) = Otg:)F(Z) = Oég,]f)F(U,t,B),
s =
we have
d - _
— F(U,t, Bhgm) = oW F(U,t, B). (10)
ds s=0
Since

Bhyym =Bo®B1 & ® BpHpm -+ ® Bj_1
Bka)m = (.’Ek’oAO R .Z‘k)\k_l/\)‘k_l)(j\o + SAm)
= xk:,OAO + -+ xk,nL—lAm_l
+(Thm + 8Tk, 0)A™ + -+ (T rp—1 + STl AL —1—m ) AN T
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it holds that
d ~ )‘k 1
Pt Bhiem) | Z Thims—

Then (10) is written as

>\k 1 =
Zm,”ma =aME  (0<E<I-1,0<m< N\ —1) (11)
Lk,

This is an equation for F on GL(r) x Dy x PHy. Since F(U,t, B) = h(UA) f(t)
XA(B,a), h(UA) = det(UA)~! # 0, if f(t) # 0, then (11) is equivalent to

Ar—1

OxA(B
Zxkz m ngk PBoa) _ 4\ (Bia)  (0<k<i-1,0<m<A—1)(12)

This is an equation on GL(r) x Dy x PH) for the function x(B). We note that
it f(t) = 0 then (11) is equivalent to any identity.

From now, we will show that (12) is the identical equation.

We can assume there exists a number j (j # k) such that diagonal elements
of B; are equal to one in the expression B = By @ --- @ B, © --- ® Bj_1.
Since xA(B, @) = xao(Bo, @) - xa, (Br,a®)) - xx,, (Bio,a7Y), (12) is
equivalent to

Ap—1
X, (Bg, o)
3 i P < ol (B ®) (13)
Tk,i
(0<k<I-1,0<m< A1)
As Bk = [xk,07 o 7xk,>\k*1]7

X (Br, ¥y = exp (Oé(()k)eo(xk,o) + af\?,le,\k—l(xk,m e ,fvie,,\k—1))

For the simplicity, we omit & in a, 2 and Az, &®) in y. Then we have

X(Br) = exp (apbo(zo) + -+ - + ar,—10x,—1(T0, -, Ta—1)) -

Using this notation, (13) is equivalent to the following equation:

0 0
= x(Bk) |®0 { am p. Om + Qm+17 Omt1 + -+ + -1 HAk—l}
0 0
+x; Qm+15 X Om+1 + -+ an,—1 I Ox.—1
m m-+
+x; { Omtg O N 9m+z + + Qay, —1 O N ekkl}
0
+1’)\k 1-m a)\k71 81‘ 10)\)€71
-
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And this equation is equivalent to the next equation:

X

+a T 9 +x 9 0

m—+1 Oaxm 1 8xm+1 m—+1

) (14)

m+1 i 9m i
o " |:x08 m o 8$m+1 * T 0 m+i:| i
+ 9 . 9 .4 Ly

a1 |x T et T, e ————— 1=
Ae—1 Oﬁxm 13xm+1 Me—1 0Ty, -1 Ant

From Lemma 4, this equation (14) is an identity. Therefore, (9) is equivalent to
the identity (12). So, we have completed the proof of Proposition 5. O

3.4 Preliminaries for the proof of Theorem 1

In this section, we give two lemmas for the proof of Theorem 1. We use the
same symbols h, A; ; as in Lemma 3.

Lemma 5. Let A; ; be expanded as

0,0 Uo,r—1

Ay = (=1 <1
Ur—1,0 | " Up—1r—1

= (—1)"*J [UE,OAE,O + uf,lﬁi,l +eee uf,rflﬁf,rfl] .

We define the symbol A, ;35 as

<.

S

3

ST
<.
N
<
S—

0A,
(1) 8%; = A
(2) (detU)A,; 75 = DijA;;5 — A, 587, (Jacobi’s formula)
(3) Aijay;=—Dijij
(4) Ai,ji} = A” .5

(1),(2) and (3) were given in the proof of Lemma 1 in Horikawa [6]. So we
omit the proofs. Here we will give the proof of (4).
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Proof of (4). 1t is sufficient to prove the case i # iand j # j.
Suppose that 1 < 7 and j < j. Let U;j;;; be a matrix made from a matrix
U by deleting i, rows and j, j columns. Then

D i = (=1)HA; - = (- 1)z+3+z+JdetU _

L5y B,0,5,
B IA, . — +j+i+ o
i = (FD)TIA = (1) detUy ;5
So A = Aijiye ]
By similar consideration, we get the same result for other cases. O

From the relation Z = [V V'] = U[I W], we obtain

{ V= UW { W=Vl (15)

We suppose that components in V, U, W are expressed as in section 2. But we
express the components in V' as

!/ !
ZO,O T ZO,n—r—l
VI _ .
/ /
Zr—1,0 Zr—1,;n—r—1
Then (15) means that
Zij = Ui Uij = Zi,j
{ Zh =D Wy Wip =D Zi 2 (16)
ip — 245 Yi,jWip ip = 2uj %3 %j,p

0<i,j<r, 0<p<n-—r).

where z; ; = hA;; because V! = [z; ;] = (detU) "' [A; ;] = h[A;].
For the coordinate change (16) between Z) and GL(r) x Uy, we obtain the
next Lemma.

Lemma 6. Let F(Z) € Sa. By the relation F(Z) = F(U[I W]) = h(U)E(W),
we obtain the function h(U)F P(W) on GL(r) x Ux. Differentiations of F(Z) and
differentiations of h(U)F (W) are related as follows:

n—r—1 813,
(ZM )F— — Oy hF — thMa (0<k,j<r)

p=0

r—1 o
0 oF
(2) (E Zi’sa,%)F:hawsq 0<s<r, 0<g<n-—r)

3) (Zf) —thzs —  (0<sg<n-7)

1=0 Z,q
8 r—1 8
()awjpiz I 0! 0<j<r,0<p<n-—r)
0 b n—r—1 9
= 7 < i i
(5) 8ui,j 621-73- + Z Wj,p 9z (0 <1,7< 7’)
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h2ZA”8 0<i<r,0<g<n-—r)

=0
Proof. (1) From (16), Lemma 3 (2) and Lemma 5 (1), we have

0 _ 0 n 8w;’p 0
822»7]» a (9ui,j = 62’1'7]' 811);7,,
,p

) iy OhA;; 0

o 3ui,j p azi,j Jp aw;p
0
:au”+z Z{ h2 ZJ A77+hA3;Z,J}Z§,p awi,p
i,p
S +(~h Z Zz—— —+hZA 9
ou; 3% 3 Jii ]’pﬁw*p
0 0
= 8um (—=hAi;) waaw JthAJHJ Jpaw_
©,p,J
Therefore,
g
i "0z
i " au o ’pa 0,p,],0 Jta jpa Wip
0 0
:Zui,ka Zw—,pa ~+h Z T
4 [y
Here we consider two cases.
(i) The case k = j.
Since
0
h Z AJ“Ju”ZJpﬁw-
i,p,7,1
=h)_ > A J,paw, =D 2.7 zmpaw, =D > w ,paw,
p,J i#] p.J i#j P i#j
we have
Z’Z”az Z“”a v ’pa 2w ’paw—
P ©,p,i7#]

’ 0
Zzw 8;: Z“zaau7 ;wj,pm
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Then, by Lemma 3 (2), it holds that

) . oh oF
= (—Fh?)(detU) thH,a .
Therefore, we obtain

0
<Zzﬂaz]> = —hF - hzwj,pa .

3

(ii) The case k # j.

In this case, it holds that

0
Zzzk Zuzk} +hZAMw ’k“’(?w

4,p,7 %

From k # j, we have

ZA*—*—--U' _ 0 . ) (lfg#k)
= IR T (I = Ay (T = ),

and

0
h Z Ajii Wik Jmawf

0,751

0
- hZzép [Z (Z Aj,i,i,j“ivk> &UZJ = hZzé D (Z A5 i Wik
P.J ;

7 %

0 0
p.J p
So, we have
0 0 .
Zzzk Z z,km_zwipm (k#j)
p ,

Then, it holds that

Because k # j, we obtain
) oF
ik=—— | F=—h p——.
(Sag ) rh S
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From (17),(18), the following desired result is obtained :

oF
(Zzlk )F 5k]hF hzw]pawk

(2) First, from

we obtain
0 _ 0
Using this equation, we get
0
;Zi,sazi;ﬂ Zzz szzza Zuz shA

0" B
=h Z 0,i(detl) 5

g

w5 o w4

Zzi, P2t
- 0z , Ows 4

(3) From equation (19), we can deduce

0
Zisaz Z<Zf4‘ms>aw =2 g,

Then, we have

Then, it holds that

0 OF
(;Z;S%>F thls Duwry

3

(4) The equation

ow;, 0
Bwj’p Z ij » 82 Z Z g awj:, 0z,

i,q 7

0
_Zzum 7. qmazm

implies

0 0
Fuyy 2=

i.p
(5) The equation
d d 9z, 0 ui 9
Dy Oy | L Ouyy O Bzw t2 Z Ju,; I ) 9L
P P 7,p 5
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implies

9 ) )
du;; 0z, Z“’”’a N

P

(6) From (19), it holds that

3.5 Proof of Theorem 1

From now on, we will prove Theorem 1. First, we derive C) o from G o. Next,
we derive G o from C) 4.

Proof of Theorem 1. [From Gy o to Cy 4]
Let F(Z) € S. Then by Proposition B, F(Z) € S C Sa,g C Sa. So F(Z)

is written as F(Z) = F(U[I W]) = h(U)F(W). We will show E(W) satisfies
C o. We derive equations (1),(2), ---, (5) in Cj 4 from G} o in this order.

(1) Ifr < Ay, Z = [V V'] is expressed as

\4 \%
20,0 e 20,Ax o 20,A+m e ZO7Ak+1—1
ZT*LO e ZT717AI¢ e ZT*I,Aker e ZT717A)C+171
Ul W]
I w
1 0 wWo. g e wo,qg v Wo,n—r—1
o --- 1 Wp_1,0 -+ Wp_1,q " " Wy—1,n—r—1

In this case, Ly, I is expressed as

Ak+1 1

oF
Ligm " = Z Z Zipr— mg, )
i p=Ag+m t,p—T
because 2, =z , . (p > 7).

By Lemma 6 (3), we obtain

Ak+1 1 Apy1—1 N
OF oF
LymF = r—m =h E E Wip—r—-m—oy |-
) ( 710 azzp 7") B ( p awi,pr)

p=Ak+m

Then, it holds that

WBE = By P

kamF = Ch(q]i)ﬁ‘ (7’ S Ak)
Thus Cy o (1) has been deduced.
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(2) Suppose Ay < r < Ay + m. In this case, Ly, is expressed as

r+m—1 Ap41—1
Lk,mF = § E Zi,p—m + § § Zi,p— m
i p=Ap+m Zip i p=r+m
r+m-—1 Ak+1 1 (‘)F
- § § Zi,p— ma 7 + E E Zz p—m— T@z
i p=Ap+m L,p—T i p=r+m nLp—T
(lf r+m< Ak+1>
or
Ak+1 1
Ly F E g Zi p— ma - i r+m> Agy).
i p=Ap+tm Zip—r

We will rewrite each part of the above equations into a equation of A and F.
By Lemma 6 (2),(3), we obtain

r+m—1 r+m—1
¥ (S ) >
zpr

p=Ar+m i p= Ak+m Wp—m,p—r
Apg1-1 Apy1—1 -
§ : } : / oF
2 p—m— ra , =h § g Wi, p—m— r
p=r+m \ i p=rtm i Wi,p—r
Then, if r + m < Agy1, we have
r+m—1 Ag41—1
0

p=Ar+m wp MPTT p—rtm
Similarly, if 7 +m > Ag41, we have
Apy1—1 P )
LimF =h Z F— F.
p=Ar+m ’
From these equations, it holds that
WhE = hlj o, F
Therefore, when Ay < r < Ay + m, equation
Lo = ol p

holds.

(3) Suppose Ay + m < r < Agyq — 1. In this case, Ly, is expressed as
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r+m—1 F

r—1
Lk’mF = Z Z Zi,pfm +Z Z Zi,p— ma /

i p=Ar+m i\p—T
Ak+1 1
oF .
+Z Z ,p m— razi (1fr+m<Ak+1)
1 p=r+m nLp—r
or
r—1 Ak+1 1 F
Y S e YIS
i p=Ar+m Zip i L,p—T
(1f7“—|—m2Ak+1)
By Lemma 6 (1),(2) and(3), we obtain
r—1 r—1 r—1 n—r—1
oF oF
5 [Z MRS S [ T
p=Ar+m Li=0 Zi,p p=Ar+m q 0 p—m,q
n—r—1

= (=h) [Omo(r—Ar) + Z Z ”qawp m.q

p=Ar+m ¢=0

r+m—1

8F r4+m—1 R
Zi,p—m F
S St |48
App1—1 App1—1 9
Z [Zzzpmral =h Z szpmraw
p=r+m 7 Lp—T p=r+m 1 “Lp—T
From these equations, if r +m < A1, we obtain
n—r—1
LigmF  =h |=6mo(r — Ag) — Z Z U’pqa
Wp—m,q

p=Ar+m ¢=0
r4+m—1 App1—1r—1
0

+ Z 8wpm + Z wamrawwr

P p=r+m =0

Similarly, if 7 +m > Ag41, we obtain

r—1 n—

r—1
Lk’mF =h —(5m’0(7’ — Ak) — Z Z ’Ll)p’q(‘9

p=Ar+m q=0

Ak+1 —1
T P
—r Owp—m p—r

From these equations,
AP RE = —h[6,0(r — Ap)] + BT
is deduced. Therefore it holds that
T E = [0mo(r — Ay) + alF]F.
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(4) Suppose Ap4+1 < r. In this case, Ly ,,, is written as

Ak+1 1
Lk mE = E § Zi,p— mi
i p=Ar+m

By Lemma 6 (1), we obtain

Ag41—1 OF Ag1—1 n—r—1 6F

> <Zzi,pmaz> = Y [ Spmph —h Y L e

p=Ar+m i P p=Ar+m q=0 p—m,q
Ak+1 1 n—r—1

= (=h) [Omo(Akp1 —AR)+ D> > w p,qaw o F.

p=Ar+m g¢=0
Then, we have

Ak+1 1 pn—r—1

LimE = (_h) 5m,0(Alc+1 Z Z Wp,q aw
p=Ar+m q=0 p—m,q
AORE = (=h) [0m.oMk + Kin] F.

Therefore, equation R R
KkJnF = _[5771,0/\1@ + as,’f)]F

is deduced.

(5) Here we derive C) o(5). From Lemma 6 (4), we obtain

8qu Z 3 8,2

0

L oF
awi,p

Owjq

:Z Ha/ Z]Ja/

l

9%F 0*F
h—F—
ow; 0w, , Z Z“” REFERCER
Therefore, it holds that

l PF O

ow; po0w; 4 awl qﬁwj »

O*F
_ZZ“” J»Ja 62 ZZu“ Naz 0%
2 2
—ZZUH uj j 6 3 ZZ“H uj 07 5.p,qF = 0.

L 0L 82 5‘2
p "7.q g “j,p
So we obtain

Oijpel =0 (0<4,j<r—1,0<p,g<n—r—1).
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[From C) o to G o]
Let F(W) be a solution of C .. We define F(Z)(€ S4) as
F(Z)=FU[I W]) = h(U)E(W) (U € GL(r)).
We will show F(Z) satisfies G q.

(a) When r < Ay, from the consideration in the above (1), we have
LimF = hlgmF. Since Ly F' = off F', it holds that

LimF = hlgmF =haPF =oPF.

By similar considerations, we can obtain Ly ,, F' = ag,]f)F 0<k<l-1,0Z<

m <\, — 1) from C) (1), (2), (3), (4).
(b) By Proposition 4, it holds that M; ;F = —§; ;F (0 <i,j <r—1).
(c) In order to derive O, ; ,, . F' = 0, we consider four cases.

(i) Suppose p < r and ¢ < 7. O, j, oF is written as

0? 0? A
Oijpad = ( > U)F(W

Ou; pOuj g ) 5u, q0Uj p

=F
(W) Ou; ,0Uuj 4 auzqau“,)

because of Lemma 3 (1).
(ii) Suppose p > r and ¢ > r. Putting p =p —r,g = ¢ — r, we have

. . 82 82 F
i,5,p,qt = 321/-,,352§7q 824@32}5 .

From Lemma 6 (6), we obtain

0

/
Zin

/
0z}

Then we have

AL | S, | 1 A S g
02, ;07 . “a i 8wdh8w "
32

= Z wz awd,pawf Bug o 2 =1 %A“A”a wa,pOw;

Sl

1,4
Similarly, we have

92F 02k
=) AN g———.
0z 40%] 5 Z ” Owg,z0w; 5

i,d
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Then we obtain

92F 02F
O, ipoF = h3 AGA; -
2JPq 2 gisid Owg pOw; 5 Owg gOw; 5
= Z AN Oy 50 F = 0.
i,d

(iii) Suppose p < r and ¢ > r. In this case, putting § = g — r, O; j p F is
written as

From Lemma 6 (6),

0%, Z " ow;
Then we have
O?F o |, OF
= A
Juipdeis  Ouip [h PRENE B, 5
OF OF
_ 2 _ 2
2h[—h Aw}ZA”W +h ZAJW& —
OF
= h2 Z [(—2R)AipAji+ Djiip) o
— 1,9

Here we have used Lemma 3 (2) and Lemma 5 (1). Similarly, we have
O*F O*F OF

= =h? —2R)A; N+ DN, .

Ty~ Doy " 2 (O Ais]

i g

Therefore, it holds that

oF
iijap} aw,
—h2z —2h)detUN; , i3+ A5, — A oF

0,50 G5455,p iﬁ,jm] w- -
i,q

Di,j@qF =h’ Z [(_2h)[Ai,ij,€ - Ai,iAj,p] + Aj,%,i,p -

%,q

oF
= hzZ[ 208 555 T Ajiip + D ,P,]’L] Ow- -
i 1,9
oF
=02 [-285,0 + 200, dwr,

Here we have used Lemma 5 (2),(3),(4).
(iv) Suppose p > r and ¢ < r. Putting p =p —r, O, j 5 o F is written as

82 82
Oijpal = B g
»JsPyq <8zz{,ﬁaujvq 8“1’,(182;,‘5)

02 02
N — = F=0.
Ouiq0z; 5 0z ;0ujq

The identity of the second line is obtained from the case (iii). O
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3.6 Proof of Theorem 2

Proof of Theorem 2. Let F(Z) € S. Then F(Z) satisfies the equation
Dijpg(Z) =0 (0<id,j<r-1,0<pg<n-1).

By Proposition 2 (2), it holds that

(C)\)*(DijPQ)F(C/\_l(UAvtv B)) =0
(OSZ’JST_17 ngvqgn_l)a

where Z = UA[I T|B. As
F((HUAG, B)) = F(UA[L T)B) = h(UA) f(t)xa(B, ),

we obtain

(CA)*(Diqu)h(UA)f(t)XA(By 0‘) =0
(0<4,j<r—1,0<pg<n-—1).

Therefore h(UA) f(t)xa(B, ) satisfies IAi:A,a.

Conversely, suppose f(t) € O(Dy) and that h(UA)f(t)xx(B,a) satisfies
H).o. We define an analytic function F(Z)(€ O(Zy)) by F(Z) = F(UA[I T|B) =
h(UA)f(£)x (B, @).

From

(C2)«(Dijpg) H(UA) F()xA (B, @) = (0 (Dijpg) F(C (U A, £, B)) = 0,

we obtain
(D)4 (Dijpg) F (G 1 (G0 (2))) = 0.

Then we have
OijpeF(Z) =0 (0<i,j<r—1,0<pq<n-—1).

On the other hand, F(Z) € S, p by its definition and Proposition 3 (2). Then
from Proposition 5, F(Z) satisfies the condition

LimF(Z)=a¥F(Z) 0<k<i—1,0<m<N\—1)
M”F(Z)Z—&JF(Z) (OSZ,]ST—I)

Therefore, F(Z) € S. O
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